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ABSTRACT

Seven algorithms for failure detection, isolation, and correction
of redundant inertial instruments in the strapdown dodecahedron
configuration are competitively evaluated in a digital computer
simulation that subjects them to identical environments. Their
performance is compared in terms of orientation and inertial veloc-
ity errors and in terms of missed and false alarms.

The algorithms appear in the simulation program in modular form,
so that they may be readily extracted for use elsewhere. The
simulation program and its inputs and outputs are described.

The algorithms, along with an eighth algorithm that was not simu-
lated, are also compared analytically to show the relationships
among them.
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1. INTRODUCTION

1.1 BACKGROUND

The notion of improving the reliability of a system by using

redundant elements and some method of reorganization after a failure

has been around for a long time. Since inertial instruments have never

been as reliable as one might like, inertial navigators and attitude

references have been prime candidates for this treatment. System level

redundancy has been most common, with duplicated or triplicated gim-

balled platforms or strapdown packages. Duplication permits automatic

failure detection but requires some kind of external information for

failure isolation. Triplication permits automatic failure detection and

isolation by a simple majority voting scheme. However, a second fail-

ure cannot always be isolated with triplicated systems.

Weiss and Nathan ' 2 seem to have been the first to point out

that, if six inertial instruments are arranged so that no three of their

input axes are coplanar*, then first and second failures can be detected

and isolated. Thus greater reliability can be achieved than with nine

instruments arranged three per orthogonal axis. A third failure cannot

be isolated without external information.

Ephgrave 3 and Gilmore4 '
5

' 6 have shown that the optimal

arrangement for the six instruments is with their input axes perpendi-

cular to the faces of a regular dodecahedron. Both gyros and accelero-

meters can be arranged in this manner. The symmetry of the dodecahe-

dron configuration maximizes accuracy for the worst cases of operation

with a subset of the instruments.

The simple majority voting scheme is no longer usable because

the instrument outputs are not directly comparable, since their input

It appears to be most practicable to embody this concept in a strapdown
package, thus avoiding the problem of providing gimbal redundancy.
However, it is possible, for example, to put three of the instruments on
each of two gimballed platforms and use data crossfeeding and gimbal
slaving techniques to enhance reliability. Only the strapdown case is
considered here.
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axes all point in different directions. Therefore, an algorithm must be

devised to perform failure detection, isolation, and correction (FDIC).

iany such olg rithS b eer k 0been sugagested by prariousn uthors. The

extent to which the different algorithms have been reduced to practice

varies widely from one to another. The purpose of this study is to com-

pare an appropriate selection of FDIC algorithms with one another ana-

lytically and by simulation to determine which is the best and to obtain

insight into their modes of operation with the goal of combining their best

features and remedying their shortcomings.

The problem has two aspects. The first is the problem of detecting

signals (the errors of the failed instruments) in the presence of noise

(the errors of the unfailed instruments) and making a decision as to the

existence of one or more failures. The second aspect is the problem of

isolating the failed instruments. This problem is not trivial, because

the available information is not always unambiguous in the case of two

failures. Of course, simultaneous failures should be quite unlikely in

a well-designed system, but one should not overlook the possibility that

a second failure could occur during the finite time required to detect and

isolate a first failure. It is also conceivable that a first failure might

be small enough so as to go undetected and yet be able to interfere with

the detection of a subsequent failure because of the ambiguity mentioned

above.

1.2 WHAT IS A FAILURE?

A definition of a failure might be:

"A failure is an event wherein one or more com-
ponents of an inertial instrument or its associated
electronics ceases to function properly."

This may be what intuition tells us a failure is, but it is not very useful

in practice because we cannot, in general, tell whether or not each of the

components of an instrument is functioning properly at every instant of

time.

A more operational definition might be:

"A failure is an event wherein the error in the
output of an inertial instrument exceeds some
predetermined specification. "

2



Unfortunately, the normal operation of an unfailed instrument may

occasionally cause the specification to be exceeded during staging tran-

sients, for example. Also it is mathematically convenient to model the

errors of unfailed instruments with gaussian probability densities, which

means that any specification has a finite probability of being exceeded

without a failure.

We shall cut the Gordian knot by defining a failure as:

"A failure is an event wherein the failure simu-
lator in the simulation program changes the state
of an instrument from unfailed to failed with an
accompanying change in the instrument error."

This definition makes up in convenience for what it lacks in

elegance.

1. 3 RELIABILITY AND PERFORMANCE

In general, we consider reliability to be the probability that the

system completes its mission without system failure (in some sense)

and performance to be some measure of the errors of the unfailed sys*

tems. The errors of the failed systems are large and ought not to be

counted against performance.

The nature of the interaction between reliability and performance

depends upon the definition of reliability. A definition of reliability might

be:

"Reliability is the probability that less than three
gyro failures and less than three accelerometer
failures occur during the mission. "

With this definition, the reliability is independent of the choice of algo-

rithm. The relative merits of the different algorithms are then revealed

by their performance, both in terms of missed and false alarms and in

terms of the system velocity and orientation errors.

Another definition of reliability might be:

"Reliability is the probability that the system
errors do not exceed their specifications dur-
ing the mission. "

3



With this definition, performance is nearly independent of the choice of

algorithm, since it is always within specification for an unfailed system.

The relative merits of the different algorithms are then revealed by the

system reliability.

Still another definition might be:

"Reliability is the probability that no missed
alarms and less than three failures and false
alarms combined (for the gyros, and the same
for the accelerometers) occur during the
mission. "

With this definition, both reliability and performance depend upon the

choice of algorithms. The logic of this choice is that false alarms, unless

they lead to a missed alarm, are not likely to cause the large errors that

missed alarms do.

For the same algorithms, the first definition leads to higher relia-

bility and worse performance than the third. Both the reliability and per-

formance associated with the second definition depend upon the specifica-

tion. The tighter the specification is, the higher the performance and

the lower the reliability will be.

The estimation of reliability requires the choice of one of these

definitions that suits the mission and specification of the failure rate

and failure magnitude probability density for each type of failure. The

system error probability density for each failure magnitude must then

be determined by simulation for each algorithm for the zero, one, and

two failure cases, and all of this information must be combined in the

appropriate manner to obtain reliability and performance estimates

according to the chosen reliability definition.

It was not possible to carry out such an elaborate program in the

course of this study. Instead, the competing algorithms are all sub-

jected to the same series of failures. The resulting system errors are

then used as relative figures of merit to rank the algorithms. This

technique avoids the detailed characterization of the failure modes

peculiar to a particular system that would otherwise be required.

For a manned mission such as Space Shuttle, performance is very

important. That is, if two algorithms yield the same reliability, the one

4



that performs FDIC quickly before large velocity or orientation errors

are accumulated is certainly to be preferred over a slower FDIC that does

allow such errors to build up, in order to minimize the risk to the men

on board.

On a long-duration unmanned astronomical satellite, however, the

errors building up during FDIC action are of relatively little importance,

merely causing a temporary loss of observation time. Algorithms designed

for such a mission may score somewhat poorly in performance compared

to algorithms designed for a shuttle mission. However, it is felt that

even for such algorithms it will be meaningful, or at least interesting,

to look at their performance relative to the other algorithms.

1. 3. 1 Reliability With Perfect FDIC

If we assume that the FDIC algorithms are perfect, then the relia-

bility is simply the probability that less than three gyro failures and less

than three accelerometer failures occur during the mission. If p is the

probability of a given instrument failing during a, specified time interval,

then the probability of m out of n instruments failing in the specified time

interval is given by P(m, n)

P(m, n) = ! m (n-m)! p) (1-1)

When a constant failure rate, X, and a time interval, At, are specified,

the probability of a given instrument and its associated electronics fail-

ing during the time interval is

p = 1 - eAt (1-2)

The gyro or accelerometer reliability is given by

2

R= P(m, 6 ) (1-3)
m=O

for the dodecahedron configuration, since three failures cannot be isolated

without external information. If Rg is the gyro reliability and Ra is the

accelerometer reliability, calculated according to Eqs. 1-1 through 1-3,

5



then the system reliability is

R R (1-4)
g a

If there are any series elements (common power supplies, clocks, heaters,

computer, etc. ) with a significant failure rate, the actual reliability will

be much less than Eq. 1-4.

1.3. 2 Performance With Perfect FDIC

The performance of instruments in the dodecahedron configuration

can be calculated in a simple manner if it is assumed that a perfect FDIC

combines the outputs of the unfailed instruments by least-squares, and

if it is assumed that the errors of the unfailed instruments are statisti-

cally independent with zero mean and unit variance.

If the FDIC output errors are expressed in terms of the strapdown

package coordinate system, they are correlated, and they differ for each

different combination of failed instruments. Furthermore, generally the

axis of greatest error will not lie along one of the coordinate axes, so

that the greatest error will not be immediately apparent. Therefore, the

covariance matrix for any given combination of failures is diagonalized

by means of an orthogonal transformation to a new error coordinate

system. The error coordinate system, in which the FDIC output errors

are uncorrelated, can be related to the input axes of the failed and unfailed

instruments so as to provide a physical picture of its orientation. The

principal axes of the error ellipsoid lie along the axes of the error coor-

dinate system, which are different for each different combination of

failed instruments.

For zero instruments failed, the error coordinate system axes may

be taken in any direction (retaining orthogonality, of course). The error

ellipsoid is a sphere.

For one instrument failed, axis A is along the input axis of the

failed instrument. Axes B and C may have arbitrary orientation about

A. The error ellipsoid is a prolate spheroid with major axis along A.

For two instruments failed, their input axes form two acute angles

and two obtuse angles. Axis A bisects the acute angles. Axis B bisects

6



the obtuse angles. Axis C is perpendicular to both input axes. The error

ellipsoid has its major axis along A and its minor axis along C.

For three instruments failed, there are two equally probable possi-

bilities. Either the three faces of the dodecahedron normal to the input

axes of the unfailed instruments meet at a vertex of the dodecahedron

(case A) or the three faces of the dodecahedron normal to the input axes

of the failed instruments meet at a vertex of the dodecahedron (case B).

Axis A passes through the center of the dodecahedron and the vertex.

Axes B and C may have arbitrary orientation about A. For case A, the

error ellipsoid is an oblate spheroid with minor axis along A. For case

B, the error ellipsoid is a prolate spheroid with major axis along A.

Average errors are computed by adding together all of the covari-

ance matrices (without diagonalization) for a given number of failures

and dividing by the number of matrices. The result turns out to be equal

to the identity matrix multiplied by a scalar, the square root of which is

called the average error. Thus, when averaged over all possible com-

binations, the error ellipsoid for a given number of failures is a sphere.

Table 1-I presents the standard deviations of the errors in the error

coordinate system and the average errors.

Table 1-I. Errors With Perfect FDIC

7

Error Coordinate
Number of Number of System Axes Average

Instruments Combinations Error
Failed A B C

0 1 0.707 0.707 0.707 0.707

1 6 1.000 0.707 0.707 0. 816

2 15 1.345 0.831 0.707 1.000

3 A 10 0.727 1.345 1.345 1. 176

3 B 10 3.078 0.831 0.831 1.902

3 A and B 20 1. 581



1.4 THE ALGORITHMS

Eight different algorithms have been selected for competitive

evaluation. The algorithms rejected are all earlier or alternative efforts

of authors whose algorithms have been selected. In roughly chronological

order the selected algorithms are

1. Adaptive 66 (Ephgrave)3 ' 

2. Fifteen Threshold (Evans and Wilcox)8 ' 9,10

3. Squared Error (Gilmore, McKern, and

Oehrle)ll1 12,13,14

4. Bayesian Decision (Gully)

Theory

5. Maximum Likelihood (Wilcox) 17,18

6. Minimax (Potter and
Deckert)1 9 , 20, 21, 22, 23, 24, 25, 26

7. Adaptive 72 (Chien)

8. Sequential (Eckelkamp and Schiesser)
Z

9

The algorithms are described briefly here and in more detail in Para-

graphs 3. 2. 1 through 3. 2. 8. However, the reader must go to the refer-

ences for the theoretical backgrounds and derivations of the algorithms

which, in many cases, are quite lengthy.

The Adaptive 66 Algorithm by Ephgrave3 ' 7 uses a weighted least-

squares estimator to perform failure detection, isolation, and correction.

The estimator estimates the instrument package input vector (accelera-

tion or angular velocity). The residuals are used to estimate the variances

of the instrument errors. The variances are used to obtain the weights

for the estimator in an iterative fashion.

The Maximum Likelihood Algorithm by Wilcox 7 ' 8 is very simi-

lar but uses six additional test signals whose expected values are the

instrument variances to start the iteration.

The Bayesian Decision Theory Algorithm by Gully 5 ' 16 performs

failure correction by means of a least-squares estimator using only the

instruments classified as unfailed. The residuals are tested against

thresholds to perform failure detection and isolation.
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The Squared Error Algorithm by Gilmore, McKern, and

Oehrle11 12, 13,14 performs failure correction by means of a least-

squares estimator like that of the Bayesian Decision Theory Algorithm.

The sum of the squares of the residuals (total squared error) is tested

against a threshold to perform failure detection. The squares of the

residuals are tested against the total squared error to perform failure

isolation.

The Fifteen Threshold Algorithm by Evans and Wilcox8 ' 9 10 per-

forms failure correction by means of a least-squares estimator like those

of the preceding two algorithms. Fifteen test signals, each involving

the outputs of a different set of four instruments, are compared to thresh-

old to perform failure detection and isolation.

The Minimax Algorithm by Potter and Deckert1 9 ' 20, 21, 22, 23 , 25,26

offers two different methods of failure correction. One is a least-squares

estimator like those of the preceding three algorithms. The other is a

Bounding Sphere Algorithm (described below). Failure detection and iso-

lation are performed with the same fifteen test signals as the preceding

algorithm but different logic.

The Sequential Algorithm by Eckelkamp and Schiesser29 uses a

Kalman-Bucy filter to perform failure correction. The filter has nine

states: three for the package input vector and six for the instrument

errors. The measurements are the six instrument outputs. The K-B

residuals and the instrument error states are compared against thresh-

olds to perform failure detection and isolation. Failed instruments are

eliminated from the measurement vector.

The Adaptive 72 Algorithm by Chien 7 ' Z8 performs failure correc-

tion by means of a least-squares estimator like those of the Bayesian

Decision Theory, Squared Error, and Fifteen Threshold Algorithms.

However, it also performs "identification" to decide whether a failure

has a bias, a ramp, or a "variance" type of waveform. It then performs

"recompensation" to estimate the value of a bias or ramp failure and

"recertification" to decide if the recompensation effort was successful

enough to allow the instrument to be reinstated using the new compensation.

9



It is reinstated simply by reverting to the least-squares solution that

includes it. Failure detection and isolation use six test signals that

are a subset of the fifteen test signals mentioned above for the first fail-

ure and five test signals that are also a subset of the fifteen test signals

for the second failure. The selection of five signals depends upon which

instrument failed first so that all fifteen signals are used at one time

or another.

1.5 THE SIMULATION

Figure 1-1 shows the overall system block diagram of the FDIC

simulation program, FAILSIM. It is used to compare the different

algorithms.

e The trajectory generator provides an ideal trajectory that
includes rotational and translational vibratory motions to
exercise the algorithms.

e The instrument configuration calculation provides compo-
nents of angular velocity and acceleration along the input,
output, and spin axes of each gyro and along the input, pen-
dulous, and output axes of each accelerometer.

* The unfailed errors calculation provides all of the errors
experienced by the gyros and accelerometers in unfailed
operation, except those produced by the sampling and
quantization processes.

* The additive failures calculation provides the errors caused
by those failures that add to the output produced by the
instruments in unfailed operation. (An example would be
a bias drift shift which would leave the response to inputs
unchanged. )

. The integration, sampling, and quantization calculations
provide these functions, converting angular velocity and
acceleration into increments of angle and increments of
velocity.

e The substitutional failures calculation provides the instru-
ment outputs caused by those failures that substitute an
incorrect output for the correct one (an example would be
zero output).

10
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* The nine failure detection, isolation, and correction (FDIC)
algorithms each combine the six gyro outputs into an incre-
mental angle vector and the six accelerometer outputs into
an incremental velocity vector. FDIC algorithm 0 is a
nominal algorithm supplied with information from the fail-
ure simulator so that it always uses all of the unfailed
instruments and none of the failed instruments. FDIC
algorithm 0 provides a standard against which the candi-
dates can be compared.

* The nine identical strapdown algorithms convert incremen-
tal angles and incremental velocities into actual orientation
and actual inertial velocity.

· The orientation and velocity errors are calculated using
the ideal orientation and ideal inertial velocity from the
trajectory generator.

* Missed and false-alarm statistics, orientation errors,
velocity errors, and computer time are calculated to pro-
vide a basis for comparing the different algorithms.

A computer session wherein the program is loaded and executed is

referred to as a run. Each run may contain one or more cases, each

case having its own input data. Each case may contain one or more

Monte Carlo trials, all trials having the same input data but having

different pseudorandom number sequences.
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2. CONCLUSIONS

Seven of the eight algorithms were simulated (all except the Adaptive

7Z Algorithm). The detailed results are given in Section 8. The con-

clusions are based upon the gyro results only, since the accelerometer

results were incomplete due to limited resources. Four of the algorithms,

the Fifteen Threshold, Squared Error, Bayesian Decision Theory, and

Minimax gave considerably better all-around performance than the other

three, Adaptive 66, Maximum Likelihood, and Sequential. The first four

have in common a definite logical structure that is absent from the Adap-

tive 66 and Maximum Likelihood Algorithms and is not as clear-cut in

the Sequential Algorithm. Thus we conclude that a definite logical struc-

ture is to be desired. The structure should make explicit what instru-

ments are classified as failed or unfailed, what hypotheses are being

tested (or what decisions are being made), and what test signals and

thresholds are to be used in testing each hypothesis (or making each

decision).

Of the three poorer algorithms, it seems clear that the Adaptive 66

is the best and Maximum Likelihood the worst. The problem with the

Maximum Likelihood Algorithm seems to be that subtracting off the residu-

als from the inconsistency states is an inadequate method of preventing

interaction between subsequent failures (Paragraph 3. 2. 5). The Sequen-

tial Algorithm is also subject to interaction to a lesser extent (Para-

graph 3. 1. 2.4). We conclude that interaction should be completely elim-

inated as it is in the four better algorithms. (It is essentially eliminated

in the Adaptive 66 Algorithm. ) By elimination of interaction we mean that

the output of an instrument which has been classified as failed should not

be used in making a decision about the classification of another

instrument.

Of the four better algorithms, none demonstrates a clear-cut super-

iority. In the double simultaneous failure runs they rank as follows:

Minimax

Fifteen Threshold

Squared Error

Bayesian Decision Theory.
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However, the Fifteen Threshold Algorithm is significantly poorer than the

others in response to first failures. Apparently this result occurs because,

unlike the other three algorithms, its thresholds for first and second fail-

ures are identical. However, false alarms are more likely with one

instrument already failed, requiring a higher threshold level for second

failures than for first failures. Thus we conclude that independently

adjustable thresholds for first and second failures (Squared Error, Baye-

sian Decision Theory) or a properly preset ratio between the thresholds

for first and second failures (Minimax) should be provided.

The first and second failure plots show no clear-cut advantages for

any of the remaining three algorithms, except possibly that the Bayesian

Decision Theory Algorithm is not quite as good as the other two. If we

let the double failure results govern, then the overall standings would be:

Minimax

Squared Error

Bayesian Decision Theory

Fifteen Threshold

Adaptive 66

Sequential

Maximum Likelihood.

However, differences between the top three algorithms are marginal and

the ordering should not be taken too seriously. For example, the Mini-

max Algorithm has relatively high computer sizing and timing require-

ments. Weighting these factors heavily could move it down the list.

We seem justified in making at least a tentative conclusion that

indirect test signals are better than direct test signals (Paragraphs 3. 1. 2. 1

and 3. 1. 2. 3), especially for double failures. This conclusion tends to

substantiate the claims of Reference 24.
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3. CANDIDATE FDIC ALGORITHMS

The analytical background of the different algorithms is explored in

Subsection 3. 1, while Subsection 3. 2 specifies the algorithms in detail.

3. 1 ANALYTICAL COMPARISON OF ALGORITHMS

The different algorithms are compared analytically in this section.

3. 1. 1 General Considerations

At least three types of information may be available for use by an

FDIC algorithm:

1. The outputs of the inertial instruments

2. The internal states of the inertial instruments (such as
gyro wheel speed)

3. The outputs of electromagnetic radiation sensors (such
as star trackers, doppler radars, etc. ).

All of the algorithms use the first type of information. Only the

Fifteen Threshold Algorithm uses the second type of information, although

the others are capable of modification with varying degrees of facility to

use it. In order to avoid undue complexity and keep the comparison fair,

this capability will be deleted from the Fifteen Threshold Algorithm.

None of the algorithms use the third type of information, but the Sequential

Algorithm is formulated so as to be able to accept such information readily.

There are at least two different concepts of the nature of the problem

being solved when one designs an algorithm for this type of system. They

lead to different types of algorithms. The first concept is that an instru-

ment is either failed or unfailed. The algorithm must determine which

instruments are failed and which are not. The subset of unfailed instru-

ments is used for navigation while the failed instruments are ignored.

The Fifteen Threshold, Squared Error, Bayesian Decision Theory,

Minimax, Adaptive 72, and Sequential Algorithms are of this type.

The second concept is that the important state of an instrument is

the error of its output. The algorithm must determine the variance of

this error and weight the instrument outputs accordingly. The Adaptive

and Maximum Likelihood Algorithms are of this type.
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The first problem concept may be considered as a special case of

the second, in which the instrument error variance estimates can take on

only the values one and infinity.

The unfailed instruments are subject to errors during normal opera-

tion. These errors can cause the algorithms to make mistakes in isolating

the failed instruments. Both false alarms (unfailed instruments classified

as failed) and missed alarms (failed instruments classified as unfailed)

can occur. For the first problem concept, false and missed alarms appear

as the use of an incorrect subset of instruments. For the second problem

concept, false and missed alarms appear as the use of incorrect instrument

weights.

In the deterministic case, when the unfailed instruments have zero

errors, it is possible to detect one, two, or three failures and to isolate

one or two failures. However, when the errors resulting from the failures

of two instruments have certain ratios, it is not possible to distinguish

between that event and the failure of a different pair of instruments. (See

Paragraph 3. 1. 3. ) In the deterministic case, this situation has probability

zero, but when the errors of the unfailed instruments are nonzero, the

probability of ambiguity becomes greater than zero. For this reason, the

isolation of double simultaneous failures is difficult. Most of the algorithms

seem to have been constructed under the assumption that double simultane-

ous failures are very unlikely. Only the Minimax Algorithm provides a

choice of implementations that depends upon this point. For consistency,

only nonsimultaneous failures will be assumed for the Minimax Algorithm.

(This decision does not preclude determination of the effects of double

simultaneous failures on the algorithms during evaluation. )

Another question is how the different algorithms respond to "glitches"

(temporary malfunctions), that is, whether or not an instrument will be

reinstated as unfailed if "healing" is observed. The Fifteen Threshold and

Minimax Algorithms do not permit reinstatement. The Adaptive 66,

Squared Error, and Maximum Likelihood Algorithms do permit reinstate-

ment. It seems from the documentation that the Bayesian Decision Theory

Algorithm is not intended to permit reinstatement. If reinstatement is not

permitted, then glitches are treated as failures. On the other hand, if

glitches are infrequent in a particular system, prohibiting reinstatement

17



will preclude the erroneous reinstatement of failed instruments. Still

another point is that reinstatement may permit the eventual correction of

false alarms. A particular kind of glitch is the shift of bias drift rate

sometimes experienced by gyros. The ability to recalibrate the drift and

reinstate the instrument might be desirable. Such a capability, however,

would introduce the possibility of the occurrence of unnecessary, erroneous

recalibrations. Gully 5 discusses drift calibration but does not present an

FDIC algorithm incorporating this feature. The Adaptive 72 Algorithm has

the capability of recompensating and reinstating instruments with ramp

errors as well as bias shifts.

In the Adaptive 66 and Maximum Likelihood Algorithms, failure

detection and isolation are obscured by a variance estimation scheme. In

the Fifteen Threshold, Bayesian Decision Theory, Adaptive 72, and Sequen-

tial Algorithms, failure detection occurs only when isolation occurs. In the

Squared Error Algorithm, detection and isolation are separate processes.

No action is taken when detection without isolation occurs. However, if an

instrument is isolated as failed and subsequently the isolation test fails,

the instrument is not reinstated unless the detection test fails also. The

Minimax/Bounding Sphere Algorithm has separate failure correction

strategies for isolated and for detected but unisolated failures.

The Fifteen Threshold, Squared Error, Bayesian Decision Theory,

and Adaptive 72 Algorithms use a least-squares failure correction tech-

nique. The Adaptive 66 and Maximum Likelihood Algorithms use a

weighted least-squares failure correction technique. The Minimax

Algorithm has a choice of either a least-squares failure correction tech-

nique or the Bounding Sphere Technique, which minimizes the maximum

possible estimation error. The Sequential Algorithm uses a Kalman-Bucy

filter to perform failure correction.

It is possible to construct six test signals, each predominantly

dependent upon the error of a single instrument, but also dependent to a

lesser extent upon the errors of the other instruments. Such "direct" test

signals may be linear or quadratic and are used by the Adaptive 66,

Squared Error, Bayesian Decision Theory, and Maximum Likelihood

Algorithms. The linear direct test signals are proportional to the resi-

duals of the least squares solution.
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It is possible to construct 15 test signals, each depending upon the

errors of a different group of 4 instruments, and completely independent

of the errors of the other two instruments. Such "indirect" or "parity"

test signals are used by the Fifteen Threshold, Minimax, and Adaptive 72

Algorithms.

The Fifteen Threshold, Squared Error, and Maximum Likelihood

Algorithms all make use of prefilters to reduce the effects of quantization

errors. To keep the comparison fair, the Adaptive 66, Bayesian Decision

Theory, and Minimax Algorithms will be equipped with prefilters too. The

Adaptive 72 Algorithm has a filter in its detection system and thus requires

no prefilter. The Sequential filter is a modified Kalman-Bucy filter and

also needs no prefilter.

Since there are six instruments of a given type, six failed/unfailed

decisions must be made or six variances must be determined to select or

weight the instrument outputs properly. The six instrument outputs can

provide six equations. However, these six equations contain nine unknowns:

the six instrument errors and the three components of the angular velocity

or acceleration inputs to the instrument package about which little a priori

information is available. It is this deficiency of three equations that causes

the fundamental difficulty in the design of failure detection algorithms

based solely upon the instrument outputs and, by precluding the possibility

of perfect failure detection, makes the probleminteresting.

Additional a priori information can be obtained by assuming that the

magnitudes of the errors of four of the six instruments are less than

quantities determined by their unfailed performance, or that the variances

of four instruments must be equal to their unfailed value, while the vari-

ances of the other two instruments may be greater than or equal to this

value. The inequalities thus obtained are, however, insufficient to replace

the missing equations.

It is possible to solve for three "inconsistency states" which are

linear combinations of the instrument outputs and therefore of the instru-

ment errors and which are independent of the inputs to the instrument

package and of each other. The vector comprising these three states is

zero when all of the instrument errors are zero, regardless of the motion

of the instrument package. This vector contains all of the failure detection
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information available to the types of algorithm considered here. The

various test signals used by the different algorithms are all functions of

the inconsistency state vector. The only exception is the Sequential

Algorithm which attempts to use a priori information about the vehicle

motion. It is shown in Paragraph 3. 1. 2. 4 that this a priori information

has little effect.

Some of the algorithm documentation discusses running the algorithm

at a slower rate than the rate at which information from the instruments

is incorporated into the strapdown algorithm. For the purposes of this

study, such an arrangement is considered unacceptable, because it permits

a hard failure to wipe out the orientation or inertial velocity states com-

pletely. Therefore all algorithms will run at the same sampling period,

which is the strapdown algorithm minor cycle time. Thus they may be

compared on an equal footing. (Of course, applications exist where a

wipeout is acceptable. In general, they will require less computer

capacity. )

3. 1. 2 Derivation of Equations

The instrument outputs are:

y = Ax + E (3-1)

where

y = 6-vector of instrument angular velocity or

acceleration outputs

A = 6 by 3 matrix of instrument input axis direction

cosines with respect to axes fixed in the strapdown

package

x = 3-vector of instrument package angular velocity or

acceleration, and

e = 6 -vector of instrument errors.
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For all of the algorithms, we take

C s 0

c -s 0

0 c s
A = (3_2)

0 c -s

s 0 c

-s 0 c

where

c = a 1 cos a (3-3)

s = = sina (3-4)

where a is half the angle whose tangent is two. The rows of A are unit

vectors perpendicular to the faces of a dodecahedron, as seen in

Figure 3-1. The columns of A are orthogonal 6 vectors of length. Z. It is

possible to choose three more 6 vectors of length v' which are orthogonal

to the columns of A and to each other. Let them comprise the rows of a

matrix C. One of the infinite number of possibilities is

s s 0 0 -c c

C= -c c s s 0 0 (3-5)

0 0 -c c s s

By definition

CA = 0 (3-6)

It is interesting to note that the ratio s/c is equal to the golden mean.
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Figure 3-1. Dodecahedron Instrument Configuration

Let v be a 3-vector of inconsistency states, where

v = Cy (3-7)

From Eqs. 3-1, 3-6, and 3-7

v = Cc (3-8)

Thus the inconsistency states are independent of the IMU input angular

velocity or acceleration and depend only on the instrument errors. All of

the test signals used in the various algorithms can be expressed as linear

or quadratic combinations of the components of v.

Most of the algorithms have a prefilter which reduces the effect of

high frequency noise, such as quantization error, on performance. The

prefilter is a first-order filter such as

f(i+l) = kf(i) + k v (i+l)(3-9)
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where

kA = exp (_T/Tf) (3-10)

k
B

=1 - k
A

(3-11)

with T being the sampling period and Tf the filter time constant.

When the failures have been detected and isolated, it is necessary

to correct for them. In the Adaptive and Maximum Likelihood Algorithms,

correction is accomplished by obtaining the weighted least-squares

estimate of x.

x =B y (3-12)

B = (AT Q-1 A) A Q- (3-13)

where Q is the covariance matrix of the instrument errors and is assumed

to be diagonal.

In the Fifteen Threshold, Total Squared Error, and Bayesian

Decision Theory Algorithms, Qi1 takes on only the values 0 or 1. Thus,
11

Eq. 3-13 becomes

B = (AT A) -
1

AT (3-14)

-1
where the rows of A corresponding to zero Qi

1
are set equal to zero.

3. 1. 2. 1 Direct Test Signals

Several of the algorithms make use of the residuals of the least-

squares solution, as "direct" test signals, using them as estimates of the

instrument errors. They are given by

=y - y (3-15)

where

y =A x (3-16)

so that, from Eqs. 3-12, 3-15, and 3-16,

= (I - AB) y (3-17)
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For the case of no failures, Q is the identity matrix and

B =2AT (3-18)

One can see by direct calculation that

1 T = T (3-19)_- AA = ~C C

so that the i are linear combinations of the vj:

IT 1 CT
2 C y = 2C v (3-20)

Thus the six residuals contain no more information than the three incon-

sistency states. Prefiltered values of s can be obtained from

A 1 T
= C f (3-21)

where f is given in Eq. 3-9. This formulation requires the prefiltering

of only three quantities, rather than six.

When the k t h instrument has failed, the residuals are given by

Eqs. 3-14 and 3-17 with the k t h row of A set equal to zero to give A(k).

E =I - A(k) [A(k) A(k)] A(k) y (3-22)

One can see, by direct calculation, that Eq. 3-22 is equivalent to

1 T 1 )T v=2 C(k)T C 2 C() v (3-23)

where

Cij(k) = Ci j - CI) Cik (3-24)

with the exception that Sk' the residual of the failed instrument, is given as

ek = Yk (3-25)
~k =
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by Eq. 3-22 and as

(3-26)Ek = 0

by Eq. 3-23. The latter is better, since the residual of the failed instru-

ment has to be ignored, and Eq. 3-26 causes it to be ignored automatically.

For the case of zero failures, the residuals may

Eqs. 3-1, 3-5, 3-6, and 3-20

1
2=

1 -d -d -d -d d

-d 1 d d -d d

-d d 1 -d -d -d

-d d -d 1 d d

-d -d -d d 1 -d

d d -d d -d 1

be calculated from

(3-27)

where

d = 1
7 5

The Bayesian Decision Theory Algorithm uses the residuals as test

signals.

(3-28)

3. 1. 2. 2 Variance Estimators

The residuals, i', may be considered to be estimates of the

instrument error values. Their squares may be considered as estimates

of the variances of the instrument errors. The squared residuals are

used in the Squared Error Algorithm. The squared residuals are, how-

ever, not unbiased estimates of the instrument error variances. From

Eqs. 3-8 and 3-20

^ 1 TCE
2 (3-29)
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Let

T
D =CC (3-30)

then

^ 1 E il 
D i

i =j1 Ej (3-31)

and

6 6

^i 1 DijDik (3-32)
j=1 k=1 k j

The covariance matrix of e is assumed to be diagonal,

<jEk> = q jk (3-33)

If we take the expectation of Eq. 3-32 and introduce Eq. 3-33, we obtain

6

D gj q(3-34)

From Eqs. 3-5, 3-30, and 3-34, we obtain

6

5 +20 j (3-35)

and see that the estimates are biased. Unbiased estimates may be obtained

by subtracting a portion of the total squared error from each squared

error (residual). Let q be the unbiased estimate. The total squared error

is

6

TSE = E (3-36)
j=l1
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We now multiply the TSE by b and subtract it from the squared error. The

result is normalized by a.

9qi= a (i- b E, (3-37)

From Eqs. 3-35 and 3-37

= + 1 q- ( 20 klq-b )] (3-38)

a [ 5 + (20bj= l qj (3-39)

To make q unbiased, b = 1/10, and to get the scale factor correct, a = 5.

Thus

6
^2A 1 ^Z2

qi = 5 e i 2 (3-40)
; =1

(3-41)<qi> = qi (3-41)

It is of some interest to express Eq. 3-40 in terms of the inconsistency

states, v
i

. From Eq. 3-20, we have

3
A 1 

ei 2 j ji vj (3-42)

and

3 3

E2= i 4 Vj Vk (3-43)
J=1 k=l
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so that

3 3 6 3 3
5 ) 2 S C c AA a. =-/ / C.. v vC -- - C- C

.4 - A k i4k 8 ikl j Vkj=l k=l k 8 1=1 j=l k=l

It can be shown from Eq. 3-5 that

GC = 2 5 (3-45)1=1 j kl jk

so that

3 3

i1 j Cj i ( i jk)vj vk (3-46)
T j~l k=l jk

Now if Q is a diagonal matrix

Qj 
=

ij qi (3-47)

then Eq. 3-46 can be shown to be the solution of

T T
C Q CT vv (3-48)

which defines the test signals of the Maximum Likelihood Algorithm.

^2 22Now let us compare E i with qi. For example, the value of tE is

given by

I -d -d -d -d d

-d d2 d2 d2 d2 d 2

-d d d d d -d

2 1 T
61 TI dZ 2 2 2 2d (3-49)-d d d d d -d

-d d 2
d2 d d2 -d Z

d -d 2 -d -d -d d2
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where d is given by Eq. 3-28. The value of ql is

1 -d -d -d -d d

-d 0 s2 2 2 2
2 2 2 2

-d s 0 c c -s

ql = T e (3-50)

2 2 2 2
-d s c 0 s -c

-d 2 2 2 2
-d 2c s 0 -s

2 2 2 2

2 2 2 2

2 2 2 2

It is interesting to note that, if c
k

is nonzero and the other e i are

all zero, then because of the zeros on the diagonal of Eq. 3-50 and the

analogous equations for the other qi, only qk is nonzero. This is not true
^ 2

for Ei or ei .

If we assume gaussian distributions, we can find the mean square

error in the estimate of the variance. Assume that 0rk is the variance of

the kth instrument and a-2 is the variance of the other five instruments;

then it can be shown that

4 Ek k)/ Z -k+ 4 -=k 2' + 3 4 (3-51)

(Qkk ak2)> 2 + 4 a-k2 2 + 3 r4 (3-52)

Thus, both types of quadratic test signals have the same mean square

error when considered as estimators of the variance of the instrument

errors. Similar calculations can be done for the case of one failure.

3. 1. 2. 3 Indirect Test Signals

We now consider the "indirect" or "parity" test signals which,

instead of trying to put in evidence the errors of a particular instrument,
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show the error of a group of instruments that excludes one or two particu-

lar instruments. Test signals that exclude one instrument are perfectly

possible, but are not used by any of the candidates and will be ignored here.

The Fifteen Threshold, Minimax, and Adaptive 72 Algorithms use the

15 test signals, each of which excludes two instruments. Requiring that

the signals be independent of the input angular velocity or translational

acceleration determines them to within a constant factor. If u is the

15-vector of test signals, then

u =D y (3-53)

where a typical D matrix is

-c c s s 0 0

s -c -c 0 s 0

c -s -c 0 0 s

-c s 0 c s 0

-s c 0 c 0 s

s s 0 0 -c c

-s 0 -s c c 0

s 0 -c s 0 c

c 0 -s 0 -s c

c 0 0 -s -c s

O -s -c s c 0

O s -s c 0 c

0 c s 0 -c s

0 c 0 s -s c

0 0 -C C S S

(3-54)
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Each component of u is a linear combination of the components of

the inconsistency state vector v. Thus the matrix D can be factored into

two matrices

D=FC (3-55)

u =FCy=Fv (3-56)

Prefiltering may be performed on the three components of v rather than

the 15 components of u. Thus, we replace Eq. 3-56 by

u =Ff (3-57)

where f is given by Eq. 3-9 and where

0 2

-s/c -c/s

s/c -c/ s

-s/c c/s

s/c c/sSIC CIS

0O

1

1

1
1 

2 0 0

-1 s/c c/s

1 -s/c c/s

c/s -1 s/c

c/s -1 -s/c

-1 -s/c c/s

1 s/c c/s

c/s 1 -s/c

c/s 1 s/C

0 0 2
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The Adaptive 72 Algorithm uses ul, u 3 , u u1 0 , Ull, and u 1 5 for the

detection and isolation of the first failure. For detection and isolation of

the second failure when the first failure is instrument j, it uses the five

.i which have DLij zero.

There is a close relationship between the indirect test signals and

the least-squares residuals. If instruments j and k are assumed to be

failed and a least-squares solution is performed excluding them, then all

of the four residuals can be shown to be proportional to ui, where i is the

index of the row of the matrix D for which Dij and Dik are both zero. Two

of the residuals are equal to xc/2 times ui, and two are equal to ±s/2

times u
i.

3. 1. 2. 4 Sequential Algorithm

The Sequential Algorithm is essentially a Kalman-Bucy filter, and

thus appears rather different from the other algorithms. This section will

use a coordinate transformation in 6-space to demonstrate that the actual

operation of the Sequential Algorithm is similar to the operation of the

other algorithms. The detailed description is presented in Paragraph 3. 2. 8.

The linear, stochastic, multistage process to be filtered is

= 1) x + u (3-59)
xi+1 = ~ xi + U i

where

<xO>= 0 (3-60)

<Ui>= 0 (3-61)

< x xT>= M (3-62)

Ui UT>= Q ij (3-63)

<ui xo 0 (3-64)

Measurements Yi are linearly related to the state by

Yi = Hixi + wi (3-65)
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where

<Wi> = 0 (3-66)

<Wi WjT>=R (3-67)

<Ui wi (3-68)
<uiwjT>= o (3-69)

0 owi > (3-69)

The filter is given by the following. For resets:

xi = i + Ki (Yi HiXi) (3-70)

K
i

= MiHiT (HiMiHi T + R) (3-71)

Pi = (I - KiHi) Mi (3-72)

For propagation between resets:

xi+l = :P Xi (3-73)

Mi+ = p.iT + Q (3-74)
1

The state vector, x, is a 9-vector whose first three elements are the

package input 3-vector of acceleration or angular velocity. The last six

elements are the instrument error 6-vector. The measurement vector, y,

is a 6-vector whose elements are the instrument outputs. Thus the

measurement matrix is, from Eq. 3-1

H = [A (3-75)

where A is given by Eq. 3-2.
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The state transition matrix is

CD = E - l (3-76)

L J
The covariance matrices are

M = -1_3- - I _- (3-77)

I m
Q = _1 3 X .. (3-78)

R [ 16] (3-79)

Because of the H matrix, all of the nine states are coupled together,

making insight into the filter operation rather difficult. To remove this

difficulty, we transform the six instrument error states and the six

measurements (instrument outputs) into a new coordinate system by means

of the matrix D.

D =~- C (3-80)

x' =[3 °x (3-81)

y' = D y (3-82)

where C is given by Eq. 3-5. It can be shown that the inverse of D is

D 1 = [A CT] (3-83)D-~~~~~~~~~~~~~~~
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If we carry out the transformation, we find that the new filter is given by

Eqs. 3-70 to 3-74 with unprimed quantities replaced by primed quantities

and with

~' = c (3-84)

M = M (3-85)0 0

Q' =Q (3-86)

R' = R (3-87)

However, the new measurement matrix becomes

H' =-13I3] (3-88)
3

Now we see that in all matrices (4', M'o, Qr, R', and H'), the first six

states are 'decoupled from the last three. Furthermore, because of the

identity submatrices, there are actually six uncoupled sets of states com-

prising three identical two-state filters (states 1 and 4, 2 and 5, 3 and 6)

and three identical one-state filters (states 7, 8, and 9). (Note that this

conclusion will no longer hold after failure detection causes the H matrix

to be modified by deletion of a row. )

For the two-state filters, the Kalman gains can easily be found to be

K'11 =K'22 K 33 m 1 + m 2 + r (3-89)

m2
K'4 1 52 63 m +m 2 r (3-90)

while, for the one-state filters, the Kalman gains are

m
2

K74 = K' (3-91)K'74 85=K' 96 m
2

+ r74 (3-91)~~~
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Now, since m 1 represents the variance of the vehicle motions while m
2

represents the variance of the instrument errors and r represents the

variance of the measurement errors (quantization), we have that

m1 > > m 2 (3-92)

m
1

> > r (3-93)

Therefore K'4 1 K' 5 2 ' and K' 6 3 are nearly zero and states 4, 5, and 6 of

our transformed filter remain essentially zero. States 7, 8, and 9 are

simply the result of three first-order Kalman filters acting upon y4, y5,

and Y6. However, from Eqs. 3-80 and 3-82 we see that

Y5 1Y
FY(1 1

Y6

so that the inputs to the three first-order filters are proportional to the

familiar three uncertainty states. Thus x' 7 , x' 8 , and x' 9 are similar to

the filtered uncertainty states f, except for the time-varying nature of the

Kalman filter. Furthermore, from Eqs. 3-81 and 3-83 we see that

x 4

x5

A X6 + C xi (3-95)

x7

x9

Since x' 4 , x' 5 , and x' 6 are essentially zero, x 4 - x 9 are analogous to
filtered versions of the direct test signals or residuals discussed previ-

ously. The smallness of x'4, x'5, and x'
6

comes about because the a

priori information available about the vehicle motions is insufficient to

contribute significantly to the solution of the failure detection problem.
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Of course, if other types of measurements were taken (i. e. , star tracker)

the situation would be completely different. It is in the latter case that

the Sequential Algorithm should prove most effective. Unfortunately, it

is beyond the scope of this study.

One aspect of the Sequential Algorithm in which it differs from most

of the other algorithms should be mentioned. When a failure is detected,

failure correction is accomplished by deleting a row from the H matrix

and proceeding as before. However, no changes are made to the existing

values of the instrument error states. Eq. 3-27 shows that, when one

instrument exhibits an error, it not only contributes to its appropriate

residual, but contributes an amount equal to 1/V/ (44. 7%) of the error to

the other residuals. When a failure is detected, the other five instrument

error states will therefore include such errors of up to 44. 7% of the

threshold level, which will subsequently gradually decay with time. In

most of the other algorithms, the FDIC reorganization after a failure is

such that no part of the output of a failed instrument contributes to the test

signals used to find the second failure.

Since the Sequential Algorithm has so many adjustable parameters,

a relationship has been derived between its Kalman-Bucy filter operating

in steady state and the constant gain prefilters used by many of the other

algorithms, in order to gain some insight into the meanings of the param-

eters. This derivation is presented in Appendix B.

3.1. 3 Multiple Simultaneous Failures

The possibility, mentioned at the beginning of this section, that two

failures can be indistinguishable from two other failures in the determi-

nistic case can be seen by considering the three sets of errors

T
=(c 0 0 0 s 0)

T
E (0 -c 0 0 0 s) (3-96)

T
e (O 0 -c -s 0 0)

For each of these different cases of two instruments failed and four

instruments unfailed, multiplication of the error vector by the matrix C
s2

of Eq. 3-5 gives v = (0, -c , s ). Since we have shown that all of the
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test signals of all of the different algorithms are functions of v, the three

cases are indistinguishable to all of the FDIC algorithms. Reference 24

gives an interesting discussion of simultaneous failure detection and

isolation.

3. 1. 4 Linearity Versus Nonlinearity

Occasionally it has been suggested that the instrument biases should

be estimated by some kind of linear filter and then used to adjust the bias

compensation of the instruments, thus avoiding the necessity of switching

out the instruments or weighting their outputs. This procedure is linear.

It is therefore doomed to failure. The least-squares solution already gives

the optimal linear estimate of acceleration or angular velocity. For

example, suppose we modify the instrument outputs by subtracting the

estimates of the instrument errors (residuals) from them

y' = y - (3-97)

where c is given by Eq. 3-15. Then an improved estimate might be

obtained by modifying Eq. 3-12 to

x' =B y' (3-98)

From Eqs. 3-97, 3-98, and 3-15

x' =B y (3-99)

From Eqs. 3-99 and 3-16

x' =BAx (3-100)

From Eq. 3-13 we see that B A is the identity matrix so that

x' = x (3-101)

and no improvement occurs. This behavior is a well-known feature of

optimal linear solutions, intimately related to their optimality. The same

situation arises even if a Kalman-Bucy filter is used to estimate the

instrument errors, because the estimate of the package inputs is already

the optimal estimate.
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All of the FDIC algorithms studied here are nonlinear. The "linear

parts" of all of them have been shown above to be essentially identical,

all test signals depending upon the inconsistency vector v. It is the man-

ner in which the necessary nonlinearity is introduced that distinguishes

each algorithm from the others.

From Eq. 3-19 we can see that the instrument error vector can be

broken up into two parts by projection matrices

1 T 1 TC
= AA e + (3-102)2 2

These two vectors are orthogonal to each other in 6-space

( A A )T( T C C I) = T C A A C C (3-103)

Transposing Eq. 3-6 gives

T T
A CT 0 (3-104)

So that Eq. 3-103 must equal zero. If we write Eq. 3-102 as

E =; + (3-105)

we see that e contributes to the estimation error 3-vector but not to the

inconsistency 3-vector, and that e contributes to the inconsistency vector

but not to the estimation error vector. a is accessible to the FDIC

designer, but W is not since the actual package motion is not known. The

FDIC problem is to use knowledge of a to find e without knowledge of F.

Fortunately, perfect knowledge of i is not required.

3. 1. 5 V Space Logic

The 3-vector v is defined in some 3-space which we may call v-space.

This space is not the same as the ordinary 3-space in which the instrument

input axis vectors and the package input vector x are defined. In the preced-

ing section, we see that v-space and ordinary 3-space may be considered

as having orthogonal bases in a 6-space.
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It is interesting to think of the different FDIC algorithms as struc-

tures in v-space. Since all of the test signals are functions of the vi, the

comparison of a test signal to a threshold appears as the determination of

whether the end of the v-vector lies on one side or the other of a surface

in v-space. For example, total squared error equal to a threshold level

generates a sphere centered on the origin of v-space, and a parity signal

equal to a threshold level generates a plane.

Thus the failure isolation algorithm synthesis problem can be looked

upon as setting up the optimal boundary surfaces in v-space, associating

decisions with the crossing of various boundaries, and changing the

boundaries optimally after each decision.

In an algorithm with a prefilter, the filtered value of v, f, would be

used in place of v.

Up to the present time, no one has performed FDIC synthesis directly

in v-space. Perhaps the concept will never be of more than academic

interest.

3. 1. 6 Filtering

The quantization error experienced with the typical strapdown

package calls for some type of a filtering process to reduce its effect.

For example, a 5-arc sec quantum size anda l0-msec samplingperiodlead

to an instantaneous gyro drift rate with a standard deviation of 204 deg/hr.

The Fifteen Threshold and Maximum Likelihood Algorithms make

use of a simple first-order low-pass prefilter. First let us consider the

effect of step failures. If we approximate the sampled-data filter by a

continuous filter, its transfer function is simply

G(s) = 1 (3-106)
1 + Tfs

Where Tf is the filter time constant. The filter response to a step input

of magnitude a is

of(t) = a 1 - e (3-107)

40



and the time required to reach a threshold level, b, is

t = Tf In aab (3-108)

The error caused by a step (angular velocity or acceleration) of magnitude

a is approximately

E = at (3-109)

(angle or velocity).

Therefore

E = a Tf In aab (3-110)

If we normalize Eq. 3-110 on the threshold level b,

a
E = a b (3-111)

bT b af 

Figure 3-2 shows this relationship. The larger the failure is, the less

error it contributes to the system before it is switched out. If the failure

is less than the threshold (a/b < 1), then the error increases indefinitely

until the end of the mission.

Now let us consider the effect of quantization errors. The transfer

function of the sampled-data filter (of which Eq. 3-106 is an approximation)

is

1 TfA
G(z) = I z (3-112)

Tf
z-e

The angular velocity output of the gyro (or the acceleration output of

the accelerometer) is given by continuous integration, sampling, quantiza-

tion, and numerical differentiation as shown in Figure 3-3.
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Figure 3-2. Low-Pass Prefilter Error
Versus Failure Magnitude

_ T T

Figure 3-3. Gyro or Accelerometer Model

Now let us approximate the quantization error, e*, by a random

sequence such that

~<e1= o (3-113)

<*i ej> ; 6 (3-114)

where the standard deviation is given by

2 Q 2
=2 (3-115)
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where Q is the quantum size. (Eq. 3-115 assumes that e
i

is uniformly

distributed over ±Q/2. ) From Eq. 3-112 and Figure 3-3, we see that the

filter output caused by quantization is

le z (3-116)
zf T z T (3-116)

T

z- e

By long division, Eq. 3-116 becomes

T i- /T \··-Of =T

=1_-e

T

T1 -e
Wf T

0 [ * +[0

( 2T

+ \e

-i T\e

-e z - 2 + . . e*

-(i - 1)

- e
i=1

From Eqs. 3-114, 3-115, and 3-118,

Tf
e

i =1

- (i- 1)1)

-ef

(3- 119)

2 Q2
z

1 - e

6T 2 + e Tf/
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2
0f

(3-118)

[L +

(3-120)

=2 <f>=



For Tf O-0

Q-f -_6T
(f XT

(3-12 1)

the unfiltered value; while for Tf -O

Qr --

"f i Tf
(3-122)

the error becomes independent of the sampling period. From Eq. 3-120

we may write

ar T
f

--W (3-123)
1 - e Tf

6 1 + e f

This function is plotted in Figure 3-4.

11 1-eZ

I

0
z

Tf/T

NORMALIZED DRIFT RATE

Figure 3-4. Normalized Drift Rate Versus Normalized Time Constant
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The Squared Error Algorithm makes use of a different type of

prefilter. The instrument outputs are accumulated. Every 60 sec the

accumulators are purged of all outputs older than 120 sec. If we approxi-

mate the sampled-data accumulator by a continuous one, the prefilter looks

like Figure 3-5, where T is the purge period of 60 sec. (The gain of

1/3 T normalizes the prefilter so that its steady-state peak gain is unity,

to correspond with Eq. 3-107. This gain factor does not actually appear

in the Squared Error prefilter and is used here only to facilitate compari-

son with the low-pass prefilter described previously. )

The response of this prefilter depends upon the phasing of the failure

with respect to the purges. The response to a step failure of magnitude a

is shown in Figure 3-6 for four different phases. By averaging over all

values of relative phase, we can find the mean time to exceed a threshold

level, b.

00 0 < a/b < 1

2 [() 3 - 2 T 1 < a/b < 3/2 (3-124)

3 b T 3/2 <a/b < 
a p

Following Eq. 3-109, and normalizing,

ao 0 < a/b < 1

3bTp [2 a I + 3-b] +1 < a/b < 3/2 (3-125)

1 3/2 < a/b < a)

This function is plotted in Figure 3-7.

O

Tp
p

Figure 3-5. Squared Error Algorithm Prefilter
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Figure 3-7. Squared Error Algorithm Prefilter
Error Versus Failure Magnitude

A comparison of Figure 3-7 with Figure 3-2 shows a more desirable

characteristic for the Squared Error Algorithm prefilter. The error is

always less than that of the simple first-order prefilter.

Now let us consider the effect of quantization errors. Referring to

Figure 3-5, the analog integrator is actually the pulse accumulator with

Z transform Tz/(z-l). This transform cancels the one in the right-hand

box of Figure 3-3 so that

f T [e(t) - e(t-p] (3-126)
P

Using the same quantization error model as before, we see that

Q 1
f i 3T (3-127)

Since we see from the normalization procedure that Tf and 3Tp are

approximately equivalent, Eq. 3-127 shows an error due to quantization

about v\i-times larger than Eq. 3-122.
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These results do not provide grounds for a clear choice between the

two prefilters, since the low-pass filter has the better response to quanti-

zation error, and the Squared Error Algorithm prefilter has the better

response to step failure. Any of these algorithms could use either

prefilter. To be able to determine the relative merits of the algorithms

themselves, the same prefilter will be used for all three. In addition,

the Adaptive 66, Bayesian Decision Theory, and Minimax Algorithms,

which contain no filtering at all, will be provided with the same prefilter.

The first-order, low-pass type of prefilter is selected for this purpose

because it is simpler. After a single algorithm is selected, a prefilter

tradeoff study can be made in the future.

The Sequential Algorithm is essentially a modified Kalman-Bucy

filter and therefore requires no prefilter. It is discussed in more detail

in Paragraph 3. 1. 2. 4 and Appendix B.

The Adaptive 72 Algorithm is considerably more elegant than any of

the above in its filtering techniques. Originally it used a Kalman-Bucy

filter to whiten the unfailed instrument errors prior to the detection system.

Later, when the algorithm was implemented on SIRU, it was felt that the

errors were close enough to white so as to make this filter unnecessary.

The detection system uses a filter which can be represented as

shown in Figure 3-8 if the digital accumulator is represented by an analog

integrator. This detection system is for positive polarity failures; a

similar system is used for negative polarity failures.

b

i.tea

Figure 3-8. Detection System for Positive Polarity
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The loop about the integrator resets it to zero at every sampling

instant if the integrator output is less than zero. The constant b sets a

level of angular velocity error or acceleration error below which no fail-

ures are detected. The constant c determines how quickly a failed instru-

ment is switched out. The output f is 0 for no failure and 1 for a failure.

For a step failure of magnitude a, the time required to reach the threshold

level c is

o0

t = c
a-b

0 < a/b < 1

1 < a/b < co
(3-128)

Following Eq. 3-109, and normalizing,

b(c a/b

b(c/ b) - a/b
a/b - 1

This function is plotted in Figure 3-9.

in Figures 3-2 and 3-7.

7

6

5

E

b(c/b)
4

3

2

1

0
0

0 < a/b -<1

1 < a/b <ao

The error lies above that shown

1 2 3 4 5
a/b

Figure 3-9. Adaptive 72 Algorithm Filter Error
Versus Failure Magnitude
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By analogy with the Squared Error Algorithm prefilter, we see that

the equivalent quantization error response is

n *!
W ' rc/b 1(3-130)

From the normalization process c/b is approximately equivalent to 3Tp,

so that the quantization error response of the two systems is comparable.

It should be kept in mind that the above comparison does not take into

account the nonlinear characteristic of the Adaptive 72 filter, which

should have an important effect on the detection of signals in the presence

of noise.

3.2 DETAILED ALGORITHM DEFINITIONS

The algorithms, as they appear in FAILSIM, are specified in detail

in this section. However, the reader is referred to the original docu-

mentation of the algorithms for their explanations, derivations, or ration-

ales, some of which are quite lengthy. Each algorithm seems to have

been developed with a somewhat different set of assumptions about the

nature of the problem being solved.

3. 2. 1 Adaptive 66 Algorithm

The Adaptive 66 Algorithm is described in References 3 and 7. It

uses a weighted least-squares estimator to perform failure detection,

isolation, and correction. The estimator estimates the instrument pack-

age input vector (acceleration or angular velocity). The residuals are

used to estimate the variances of the instrument errors. The variances

are used to obtain the weights of the estimator. New estimates are then

obtained in an iterative fashion until the variances cease changing.

In the original algorithm, the equation for the variance in terms of

the squared residuals is given by

2 2
Qii = .i + E i = 1, 6 (3-131)1 O

where e2 is the nominal or minimum value. The computation time can be0
reduced by several orders of magnitude if Eq. 3-131 is replaced by

Qi = max (E2 , E2), i = 1, 6 (3-132)
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since the Qii in Eq. 3-132 will not change for small perturbations of the

Ei caused by unfailed instrument errors. If the Qii do not change, it is

unnecessary to recompute the correction matrix B. The change from

Eq. 3-131 to Eq. 3-132 is necessary to prevent this algorithm from con-

suming an inordinate amount of simulation computer time. In addition to

this change, a prefilter has been added which filters the instrument out-

puts prior to their use in the algorithm. Figure 3-10 shows the algorithm

flow diagram. The Adaptive 66 Algorithm has two adjustable parameters,
2the prefilter time constant Tf, and the a priori error variance E .

Initialization

fi = 0 
Q.. i =1, 6
i= o T

B = 1/2 A

(1)

Figure 3-10. Adaptive 66 Algorithm Flow Diagram
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The flow diagram description follows:

(1) The filter 6 vector f, the previous value of the instrument
covariance matrix Q, and the correction matrix B are
initialized before the trial.

(2) Each minor cycle the filter outputs are calculated. The
iteration counter is zeroed.

(3) The iteration count is increased by one.

(4) If 100 iterations have occurred, the iteration loop is
terminated.

(5) The residuals are calculated from the filter outputs, and
a new covariance matrix is obtained.

(6) If the changes in all of the diagonal elements of the
covariance matrix from their previous values are less
than the factor GRIT times their previous values, the
iteration loop is terminated.

(7) The previous value of the covariance matrix is set equal
to the new value. The correction matrix is updated. A
new iteration is performed.

(8) The package input is estimated from the unfiltered
instrument outputs.

3. 2. 2 Fifteen Threshold Algorithm

The Fifteen Threshold Algorithm is described in References 8, 9,

and 10. It makes use of the fifteen indirect test signals described in

Paragraph 3. 1. 2. 1. Each element of the test signal vector u is compared

to a threshold. A vector w is used to store the results of this compari-

son. If the threshold is exceeded by ( uil, then w
i

is set equal to 1. If

luil later becomes less than the threshold, then w
i

is not reset to 0. Thus

there is no provision for reinstatement of "healed" instruments.

An instrument is considered failed only if all of the wi to which it

contributes a signal are equal to 1. Eqs. 3-12 and 3-14 are used for

failure correction to save time in the simulation, although the original

algorithm used Gauss-Jordan reduction so that, in a real-time system,

a change to the failed/unfailed status could be implemented within a sin-

gle minor cycle. Figure 3-11 shows the algorithm flow diagram.
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The variables S and S' are 6-bit binary numbers whose bits

correspond to the unfailed (0) or failed (1) states of the instruments. S

is the instrument state. S' is set to all ones at the beginning of each

cycle. Whenever a test signal is found to be less than the threshold, the

1 bits corresponding to the instruments whose outputs contribute to the

signal are masked out by the appropriate mask:

i AMASK.1

1 0 0 0 0 1 1

2 0 0 0 1 0 1

3 0 0 0 1 1 0

4 0 0 1 0 0 1

5 0 0 1 0 1 0

6 0 0 1 1 0 0

7 0 1 0 0 0 1

8 0 1 0 0 1 0

9 0 1 0 1 0 0

10 0 1 1 0 0 0

11 1 0 0 0 0 1

12 1 0 0 0 1 0

13 1 0 0 1 0 0

14 1 0 1 0 0 0

15 1 1 0 0 0 0

Those instruments whose bits are not masked out are failed. The state

of a particular instrument is determined by masking out the states of the

other instruments with the appropriate mask:

i OMASK.
1

1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 0 0 1 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1
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The test signals are prefiltered before use in the algorithm. The Fifteen

Threshold Algorithm has two adjustable parameters, the prefilter time

constant T, and the threshold level TH.

The flow diagram description follows:

(1) The filter 3 vector f, the instrument state S, the threshold
state 15 vector w, and the correction matrix B are initi-
alized before the trial.

(2) Each minor cycle the intermediate instrument states S'
are set to all ones, and the inconsistency state vector v
is calculated and filtered.

(3) The 15 threshold states are examined. If the i t h state is
equal to 1, it is ignored.

(4) If it is equal to 0, the i t h parity signal is calculated.

th
(5) The i parity signal is compared to the threshold.

(6) If the threshold is not exceeded, all of the bits correspond-
ing to instruments included in the test signal are masked
out to 0.

(7) If the threshold is exceeded, the threshold flag is set
equal to 1.

(8) If S = S', no change in failure status has occurred, and
the correction matrix calculation is bypassed.

(9) If S' is all ones, more than two failures have been detected
and isolation is not possible. S is not changed, and the
correction matrix calculation is bypassed. Since it cannot
resolve the situation, the algorithm continues to use the
old correction matrix.

(10) S is set equal to S', and the new correction matrix B is
calculated. The new B matrix is calculated from Eq. 3-14
with the rows of A corresponding to the failed instruments
taken as zero.

(11) The matrix A T A is zeroed.

(12) The k t h instrument is tested for failure.

(13) If the k t h instrument is unfailed, its contribution to A T A
is calculated and added in.

(14) (A T A)- 1 is calculated.
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(15) The jth instrument is tested for failure.

.th th(16) If the th instrument is failed, the jth row of B is set
equal to zero.

(17) If not, the jth row of B is calculated.

(18) The package input is estimated from the unfiltered
instrument outputs.

3. 2.3 Squared Error Algorithm

The Squared Error Algorithm is described in References 11, 12, 13,

and 14. The algorithm actually used in FAILSIM differs in several ways

from these descriptions. The differences and the reasons for them will

now be discussed.

The prefilter used with the Squared Error Algorithm in SIRU con-

sists of an accumulator into which the instrument outputs are summed.

Every 60 sec, the accumulator is reset so that it contains only the last

120 sec worth of accumulated output. Thus the data accumulation period

fluctuates from 120 to 180 sec. The prefilter used in FAILSIM is a sim-

ple first-order, low-pass filter, of the kind used for most of the other

algorithms. The reason for this change is that the prefilter is not an

integral part of the different algorithms. If the SIRU prefilter should be

superior to the low-pass prefilter, all of the algorithms can make use of

it. The purpose of FAILSIM is to compare the basic algorithms with each

other. This can best be done if the prefilters are the same. After a

single algorithm is selected, a prefilter tradeoff study can be made in

the future.

The Squared Error Algorithm automatically raises the failure

detection thresholds for the gyros when the angular velocity becomes

large, in order to reduce the probability of false alarms caused by instru-

ment dynamic errors, scale factor errors, and misalignments. In SIRU,

the signal used for this purpose is the square of the sum of the absolute

values of the three components of angular velocity. This signal is not

a scalar; that is, its value depends upon the choice of coordinate system.

Since the choice of coordinate system is arbitrary, the signal is charac-

terized by an undesirable quality of arbitrariness. It is more usual to
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use invariant or covariant expressions, i. e., scalars, vectors, and

tensors. Therefore the squared magnitude of the angular velocity vector

will be used for this purpose in FAILSIM. since it is a scalar.

If a spike of angular velocity occurs and causes a spike of gyro

errors, the threshold would be raised as described above during the spike

and then lowered. The filtered inconsistency states, however, would

exhibit a decaying exponential at the filter time constant, which could

cause the now lowered threshold to be exceeded. (It would seem that the

SIRU prefilter would also experience a form of this problem.) Therefore,

instead of raising the squared error threshold, the FAILSIM algorithm

lowers the gain at the input to the prefilter. Since the gain acts upon the

unsquared signals, it is taken as the square root of the reciprocal of the

gain applied to the squared error threshold in SIRU.

The logic in the SIRU algorithm provides that, when one failure has

been detected, the algorithm will alternate between testing for a second

failure and testing for healing of the first failure, so that each of these

two tests occur only every other minor cycle. This procedure is required

because of the limited time available in the particular computer used for

SIRU. However, since all of the other algorithms are allowed all the time

they need, it seems more equitable to modify the logic so that both tests

take place each minor cycle, and this action is taken,

The SIRU algorithm provides checks for overflow of the error quan-

tities. Since overflow is not a problem for the CDC 6500, these checks

have been eliminated.

The SIRU algorithm detects the third failure. However, it does

nothing with the information other than output it. Therefore, this capa-

bility is deleted to conserve computing time.

The squared-error calculations have been modified to make the

coding simpler. However, the results are numerically identical to those

of the original equations. When zero instruments are failed, the algorithm

makes use of the residuals as estimates of the instrument error. If pre-

filtering is performed, we have from Eq. 3-21

^ C f (3-133)
2 = f (3-133)
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The total squared error for zero failures is defined as

^T ^
TSE

0
= e E (3-134)

From Eqs. 3-5, 3-133, and 3-134 we have

TSE = f f (3-135)

When the k t h instrument has failed, the residuals are calculated as in

Eq. 3-23

e = C(k)T f (3-136)

The total squared error for the remaining instruments is

,%
TSEk = e (k)T E (k) (3-137)

Note that because of Eq. 3-26, the residual of the failed instrument is

automatically dropped from TSEk.

The total squared error is compared to a threshold. If the thresh-

old is exceeded, then the ratios of the individual squared errors (squared

residuals) to the total squared error are tested against another threshold.

If that threshold is exceeded by one of the ratios, the corresponding instru-

ment is considered failed. The same procedure is used for the second

failure. A flag LHEAL controls the healing process.

LHEAL = 0 healing is not allowed
LHEAL = 1 healing is allowed

Figure 3-12 shows the algorithm flow diagram. If the flag LHEAL

is zero, instruments are not reinstated even though healing may be

observed. The Squared Error Algorithm has six adjustable parameters,

the prefilter time constant Tf, the threshold levels K 1 , K
2

, K
3
, and K 4 ,

and the gyro dynamics compensation gain kGD.
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The flow diagram description follows:

(1) The filter 3 vector f, the instrument state S, the failed
status indicators I and J, and the correction matrix B
are initialized before the trial.

(2) Each minor cycle the filter gain is calculated as a func-
tion of the previous angular velocity estimate (gyros only).

(3) The inconsistency state vector v is calculated and filtered,
the total squared error is found, and the present values
of S and I are stored.

(4) The total squared error is tested against threshold K1.

(5) If the threshold is exceeded, the residuals are calculated.

(6) The ratios of the squared residuals to the total squared
error are tested against threshold K2. If the threshold is
exceeded, the loop terminates and control passes to Step 7.
If no ratio exceeds the threshold, control passes to Step 16.

(7) K is the number of the failed instrument just detected. I
is the number of the "first" failed instrument, and J is
the number of the "second" failed instrument. If I already
equals K, no further action is required, and control passes
to Step 10.

(8) K is tested against J. If it equals J, then the values of I
and J are exchanged in Step 11.

(9) If not, I is tested against 0. If I equals 0, no failure was
previously detected, and I is set equal to K in Step 13.

(10) If not, J is tested against 0. If J equals 0, only one
failure was previously detected.

(11) Its instrument number is stored in J, and I is set equal
to K.

(12) If J is not equal to zero, then there were two previous
failures, neither one of instrument K. If healing is not
possible, no further action is taken.

(13) If healing is possible, I is set equal to K and J is zeroed.

(14) If healing is not possible, total squared error less than
the threshold has no effect.

(15) If healing is possible, any previous failed instruments are
reinstated when the total squared error is less than the
threshold.
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(16) If I equals zero, no instruments are failed.

(17) The instrument states are zeroed.

(18) If I is not zero, the It h instrument state is set equal to 1.

(19) If I is unchanged Step 20 is bypassed.

(20) The matrix for calculating the residuals from the filter
vector when instrument I is failed is calculated.

(21) The residuals and total squared error (excluding instru-
ment I) are calculated.

(22) The total squared error is tested against threshold K3.

(23) The ratios of the squared residuals to the total squared
error are tested against threshold K4. If the threshold
is exceeded, the loop terminates, and control passes to
Step 25. If no ratio exceeds the threshold, control passes
to Step 28.

(24) If the total squared error is less than the threshold, K is
set equal to 0.

(25) If J equals 0, there has been no "second failure. "

(26) If J is not equal to zero, then the healing flag is tested.

(27) If J equals 0 or healing is permitted, J is set equal to K.

(28) If J equals 0, Step 29 is bypassed.

(29) If J is not equal to zero, the Jth instrument state is set
equal to 1.

(30) If S equals S', no change in failure status has occurred,
and the correction matrix calculation is bypassed.

(31) The new B matrix is calculated from Eq. 3-14 with the
rows of A corresponding to the failed instruments taken
as zero. See Steps 11 to 17 in Paragraph 3.2.2 for the
detailed description.

(32) The package input is estimated from the unfiltered instru-
ment outputs.

3.2.4 Bayesian Decision Theory Algorithm

The Bayesian Decision Theory Algorithm is described in Refer-

ences 15 and 16. Actually, there are two algorithms derived in
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Reference 15: one for "mean failures" and one for "variance failures. "

Apparently these terms refer to the extremes of constant and white noise

errors. Reference 15 is not completely transparent to this reader, and

since Reference 16 sets forth the mean failure algorithm clearly, the

mean failure algorithm will be chosen.

The mean failure algorithm presented in References 15 and 16 is

in error, in that it produces incorrect decisions for failures that lead to

errors with negative polarity. This shortcoming can be remedied easily

by the judicious introduction of absolute value operations into all of the

decision equations.

Once this is done, it becomes obvious that the 21 decision equations

set forth for six instruments involve only six different test signals and

that these test signals are proportional to the residuals, e, of Eq. 3-17.

Furthermore, the decision tree reduces to the selection of the test sig-

nal having the largest absolute value and the comparison of it to a thresh-

old. If it exceeds the threshold, the associated instrument is failed.

If it does not, zero instruments are failed.

When one instrument is failed, the decision equations for the remain-

ing five instruments must be implemented. The test signals used in

References 15 and 16 are arbitrary and have unequal variances represent-

ing the errors of the other instruments-in unfailed operation. Considera-

tion of the symmetry of the dodecahedron configuration leads one to

believe that, if the test signals were chosen to minimize their variances,

their variances would all be equal to each other and less than or equal to

the variances of the test signals of References 15 and 16.

This guess can be shown to be correct, and the minimum variance

test signals turn out to be the residuals, E, of Eq. 3-23. Therefore they

will be used in place of the original test signals. Again the decision tree

reduces to the selection of the test signal having the largest absolute

value, and the comparison of it to a threshold, to determine whether or

not a second failure is present.

To reduce the frequency of false alarms, Reference 16 calls for two

consecutive determinations of a failure before an instrument is switched
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out. However, this process will cause an increase in missed alarms

not taken into account in the previous analysis in Reference 16. It seems

clear that this process is approximately equivalent to raising the detection

threshold. Therefore, it will be ignored. The thresholds will be set

experimentally rather than theoretically at any rate.

Reference 16 also calls for two sampling periods, 10 min for soft

failures and 0.01 sec for hard failures. The 10-min period samples are

averaged over the preceding sampling period. This procedure represents

another prefilter, resembling somewhat the SIRU prefilter. The simple

low-pass filter will be used instead for the same reasons as given for the

Squared Error Algorithm in Paragraph 3. 2. 3.

It is clear from the foregoing that considerable liberties have been

taken with Gully's original concept. This course of action was necessary

because his scheme was further from a "reduction to practice" than the

others. In summary, when no failures have been detected, the largest

residual of Eq. 3-17 is compared against a threshold. If it exceeds the

threshold, the corresponding instrument is failed. When one failure has

been detected the largest residual of Eq. 3-23 is compared against a

threshold. If it exceeds the threshold, the corresponding instrument is

failed. No healing is permitted. Figure 3-13 shows the algorithm flow

diagram.

The Bayesian Decision Theory Algorithm has three adjustable param-

eters: the prefilter time constant Tf and the threshold levels TH 1 and TH
2

.

The flow diagram description follows:

(1) The filter 3 vector f, the instrument state S, the failed
status indicator k, and the correction matrix B are initi-
alized before the trial.

(2) Each minor cycle the failed status indicator is tested. If
it equals 7, two failures have occurred, and the failure
detection and isolation logic is bypassed.

(3) If 0 or 1 failure has occurred, the inconsistency state
vector v is calculated and filtered.

(4) If k is not equal to 0, one failure has been isolated, and
the first failure detection logic is bypassed.
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(5) If no failures have been isolated, the residuals are
calculated, and the loop to find the maximum residual is
initialized. j is the number of the instrument having the
largest residual and uma

x
is the value of its magnitude.

(6) If the magnitude of the ith residual is less than u , then
Step 7 is bypassed.

(7) j is set equal to i, and Umax is set equal to the magnitude
of u

i
if ] ui I is greater than urnax.

(8) If the magnitude of the largest residual is less than the
threshold, no failure is detected and the rest of the fail-
ure detection logic is bypassed.

(9) Instrument j is failed. k is set equal to j. The jth instru-
ment state is set equal to 1. m is set equal to 1 to show
that a change has occurred in the instrument states S.
The matrix for calculating the residuals from the filter
vector when instrument k is failed is calculated.

(10) If one failure has already been isolated, m is set equal to
O to show that no change in S has occurred.

(11) The residuals (excluding instrument k) are calculated. The
loop to find the largest residual is initialized.

(12), (13) The largest residual is found as in Steps 6 and 7.

(14) If the magnitude of the largest residual is less than the
threshold, no second failure is detected.

(15) If a second failure is detected, k is set equal to 7 and the
jth instrument state is set equal to 1.

(16) If no second failure is detected, the correction matrix
calculations are bypassed unless m equals 1, showing
that a first failure was detected in this minor cycle.

(17) The new B matrix is calculated from Eq. 3-14 with the
rows of A corresponding to the failed instruments taken
as zero. See Steps 11 through 17 in Paragraph 3. 2.2 for
the detailed description.

(18) The package input is estimated from the unfiltered instru-
ment outputs.
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3. . 5 Maximum Likelihood Algorithm

The Maximum Likelihood Algorithm is described in References 17

and 18. A maximum likelihood technique is used to obtain estimates of

the instrument variances from the inconsistency vector v. The instru-

ment variances are then used in a weighted least-squares estimator.

The inconsistency vector is modified by subtraction of the residuals to

reduce the interaction of successive failures. The squared residuals

are added to the variance estimates to compensate for the decrease that

would otherwise result from the subtraction of the residuals.

The prefilter in the original algorithm, which was imbedded within

the algorithm itself, proved to be unsuccessful. Therefore the instru-

ment outputs are prefiltered prior to use in the algorithm. Figure 3-14

shows the algorithm flow diagram. The Maximum Likelihood Algorithm

has two adjustable parameters, the prefilter time constant Tf and the a

priori error variance Q 0 .

The flow diagram description follows:

(1) The residuals ., the filter 6 vector f, the previous value of
the weighting matrix Q, and the correction matrix B are
initialized before the trial.

(2) Each minor cycle the filter outputs are calculated. The
residuals are subtracted from the filter outputs, and the
inconsistency state vector is calculated. The maximum
likelihood variance estimates Q' are found and modified
to account for a priori information and to compensate for
the subtraction of the residuals to give the instrument
covariance matrix Q. The iteration counter is initialized.

(3) If the change in any one of the diagonal elements of the
covariance matrix is greater than the factor CRIT times
its previous value, a new correction matrix is required.

(4) The iteration count is increased by one. The previous
value of the covariance matrix is set equal to the new
value. The correction matrix is updated.

(5) The new residuals are found. The new covariance matrix
is obtained. (v is now zero, so that Q' is eliminated from
the expression for Q. )

(6) If 100 iterations have occurred, the iteration loop is
terminated.
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Initialization

i= 01, 6

fi = 0 i = 1, 6

Wii = Qo

| B =1 AT
.

(1)

Figure 3-14. Maximum Likelihood Algorithm Flow Diagram
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(7) If the change in any one of the diagonal elements of the
covariance matrix is greater than the factor CRIT times
its previous value, a new correction matrix is required.

(8) The package input is estimated from the unfiltered
instrument outputs.

3.2. 6 Minimax Algorithm

The Minimax Algorithm is described in References 19, 20, 21, 22,

23, 24, 25, and 26. It uses the 15 parity signals described in Para-

graph 3. 1. 2. 3. The original algorithm uses no filtering at all, so a pre-

filter in the form of a simple low-pass filter has been provided to put it

on an equal footing with the other algorithms. This prefilter rejects the

large, high-frequency rate errors caused by the instrument quantization.

The original algorithm (as detailed on a MAC listing) solved for the

parity equation weights (±c and ±s in Eq. 3-5) each time through in order

to handle the gimballed case where the relative instrument orientations

can change. As pointed out by the authors, this procedure is not necessary

for the dodecahedron strapdown case. Thus the formulation of Eqs. 3-57

and 3-58 is used instead. The parity signals used in the Minimax Algo-

rithm are normalized by a factor of 1/(2c+Zs) so that, if the instrument

outputs take on the values ±l, the magnitude of the normalized parity

signal lies in the range ±1. In FAILSIM this factor is included in the con-
2

version of the threshold levels from ig and deg/hr to m/sec and rad/sec.

Failure detection takes place when any one of the parity signals

exceeds a threshold. The original algorithm has a technique for finding

the maximum parity signal without calculating all of them. When detec-

tion occurs, a second loop calculates all of the parity signals to perform

isolation. Since the calculation of the parity originals is much simplified

by the use of Eqs. 3-57 and 3-58, this procedure is modified. Both

detection and isolation are combined in a single loop in which all of the

parity signals are calculated. Neither this change nor the one in the pre-

ceding paragraph changes the action of the algorithm in any way.

For isolation of the first failure, it is assumed that only one failure

can occur at a time. The four instruments that contribute to the value of
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a particular parity signal are called a quartet. If the signal exceeds its

threshold, the quartet is dirty; if not, it is clean. If no instruments

have failed, all quartets must be clean. Thus, a failure is detected if

any quartet is found to be dirty.

With six instruments and one failure, there must be one set of five

good instruments. With a set of five instruments called a quintet, the

isolation algorithm finds every quintet whose quartets are all clean.

Such a quintet may be a set of good instruments and will be called a clean

quintet. An instrument which is excluded from every clean quintet must

be failed since a good instrument would be in some clean quintet. Thus

the failed instrument is the one excluded from all clean quintets.

For the second failure, there are five parity signals which are inde-

pendent of the output of the first failed instrument. When four of these

exceed their thresholds, the second failed instrument is successfully iso-

lated. The zeros in the equation for the sole clean parity signal corre-

spond to the two failed instruments. The algorithm can isolate those

double simultaneous failures which cause all but one parity signal to

exceed its threshold.

It turns out that if a first failure causes all of the parity signals to

which it contributes with a coefficient of ±c to exceed the threshold, the

Minimax logic will cause the failure to be isolated. However, in order

to be isolated, a second failure must cause four parity signals to exceed

the threshold. It contributes to two of them with a coefficient of ±c and

two with a coefficient of +s. Thus, in effect, the threshold for second

failures is higher than the threshold for first failures by the ratio c/s

or 4. 2 dB.

Failure correction may be accomplished either with the least-squares

technique or with the Bounding Sphere Algorithm. This algorithm mini-

mizes the maximum possible estimation error. It is capable of modify-

ing its action when failures are detected but not isolated unlike the least-

squares algorithm. See the references for a description of this algorithm.

Figure 3-15 shows the algorithm flow diagram. (The Bounding

Sphere Algorithm flow diagram is not included since none has been seen

72



Page intentionally left blank



by the author. The Bounding Sphere FORTRAN coding was obtained by

translating MAC. ) The Minimax Algorithm has two adjustable parameters,

the prefilter time constant Tf, and the threshold level THM. The Bounding

Sphere Algorithm also requires a threshold level THS. In the absence

of a prefilter, these levels are theoretically identical. The original

algorithm makes no distinction between them.

The flow diagram description follows:

(1) The filter 3 vector, the list of the numbers of the active
instruments MNi, the number of active instruments n,
the number of detected but unisolated instruments CNO,
the instrument state S, and the correction matrix B are
initialized before the trial.

(2) Each minor cycle the inconsistency state vector v is cal-
culated and filtered. The present value of S is stored.
QUINT i , representing the quintet of instruments excluding
instrument i, is zeroed. IFAIL and NUM are set equal
to 0. The parity signal index p is set equal to 1.

The four indices i, j, k, and 1 are the numbers of the instruments

included in the pth quartet. The four DO loops cause p to run from 1 to

15 selecting the rows of the matrix F in Eq. 3-58. Thus the parity sig-

nals of Eq. 3-53 are calculated in the order shown in Eq. 3-54.

th(3) If none of the instruments in the p quartet are failed, IT
is 0.

(4) If the quartet includes a failed instrument, it is ignored.

(5) The pth parity signal is calculated.

(6) The parity signal is tested against the threshold.

(7) If the signal is less than or equal to the threshold, the
pt quartet is clean and the number of good quartets, NUM,
is increased by 1.

(8) If NUM is not equal to 1, Step 9 is bypassed.

(9) The numbers of the instruments in the first good quartet
are stored. (They will provide the solution for a double
simultaneous failure if there is only one good quartet,
i.e., if NUM = 1 in Step 29.)
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(10) - (13) If the signal is greater than the threshold, the
pth quartet is dirty. The mth quintet excludes instrument
m. Therefore if i, j, k, and 1 are all not equal to m, the
mth quintet includes the pth quartet and must be dirty,
since its quartets are not all clean. If i, j, k, or i equals
m, the quintet does not include one of the instruments of
the quartet, so that the pth quartet says nothing about the
mth quintet.

(14) If the m quintet is dirty, QUINTm is set equal to 1.

(15) IFAIL is set equal to 1 to show that at least one parity
signal has exceeded the threshold.

(16) The parity signal index is increased by 1.

(17) If IFAIL equals 0, no failures have been detected.

(18) CNO is set equal to 0.

(19) If n equals 4, only 4 instruments are unfailed. The new
failure indicated by IFAIL nonzero cannot be isolated.

(20) The number of detected but unisolated failures is assumed
to be 1, CNO is set equal to 1.

(21) m is set equal to -1.

(22) If the ith quintet is dirty, QUINT is nonzero, and the rest
of the loop is bypassed.

(23) If m is not equal to -1, this is not the first clean quintet.

(24) CS is set equal to the number of the first clean quintet.
(If it turns out to be the only clean quintet, then CS will
be the number of the failed instrument. )

(25) The clean quintet counter is increased by 1.

(26) If m is less than 0, there were no clean quintets. If m
equals 0, there was one clean quintet. If m is greater
than 0, there were two or more clean quintets.

(27) If NUM = 0, there were no clean quartets.

(28) If there were no clean quartets, it is assumed that there
are three good instruments remaining. The number of
failures detected but not isolated is the number of active
instruments less 3.

(29) If NUM = 1, there was one clean quartet.
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(30) The number of active instruments, m, is set equal to 4.
The list of the numbers of the active instruments is
changed to the values stored in Step 9. The number of
detected but unisolated failures is 0.

(31) If there were two or more clean quartets, then 2 detected
but isolated failures are assumed.

(32) There was one clean quintet. The index k is set equal
to 1.

(33) If MN i equals CS it is the number of the failed instrument.

(34) The new list of numbers of the active instruments is found
excluding the failed instrument. k is increased by 1.

(35)- The number of active instruments is reduced by 1. The
number of detected but unisolated instruments is set
equal to 0.

(36) The instrument state is updated.

(37) There were two or more clean quintets. One detected but
unisolated failure is assumed.

(38) If LSQ equals 0, the Bounding Sphere Algorithm is to be
used. If LSQ is not equal to 0, the least-squares algo-
rithm is to be used.

(39) If S equals S', no change in failure status has occurred,
and the correction matrix calculation is bypassed.

(40) The new B matrix is calculated from Eq. 3-14 with the
rows of A corresponding to the failed instruments taken
as zero. See Steps 11 through 17 in Paragraph 3.2.2
for the detailed description.

(41) The package input is estimated from the unfiltered instru-
ment outputs.

(42) The Bounding Sphere Algorithm estimates the package
input making use of CNO, which is ignored by the least-
squares algorithm.

3. 2. 7 Adaptive 72 Algorithm

The Adaptive 72 Algorithm is described in References 27 and 28.

It is the most complex of the eight algorithms studied and one of the most

recent. Unfortunately, these two features combined to make it impossible

to include it in FAILSIM as planned. The complexity mandated the use of
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the detailed program flow diagrams in writing the routines for FAILSIM

but the diagrams were unavailable in time.

32 2 8 Senuential Al.gorithm

The Sequential Algorithm is described in Reference 29. It is also

complex and new. The implementation presented here is based upon the

algorithm as it existed when the reference was written. It has not been

possible to include in FAILSIM the subsequent improvements made by its

authors.

The Sequential Algorithm consists of a modified Kalman-Bucy filter.

A detailed description of the filter is given in Paragraph 3. 1. 2. 4. In

this section we shall see how it is modified to perform FDIC.

In the original algorithm, any instrument whose error state exceeded

a threshold was taken as failed. This logic has been modified so that only

the instrument whose error state exceeds the threshold by the greatest

amount in any single pass through the filter equations is taken as failed.

The nonlinearity required for failure detection is provided by two

distinct threshold levels. One level is set quite high and is applied to

the Kalman-Bucy residuals. If the threshold is exceeded, the associated

instrument is excluded from the measurements. When the residual is

again less than the threshold the instrument is reinstated. The second,

much lower level, is applied to the instrument error states. An instru-

ment whose error state exceeds the threshold by more than any other

error state during a single pass through the filter equations is excluded

permanently from use. The residual threshold is constant. The error

state threshold is proportional to the standard deviation of the error state,

as given by the filter covariance matrix. Figure 3-16 shows the algorithm

flow diagram. The Sequential Algorithm has nine adjustable parameters

as follows:

(1) Initial variance for package input states

(2) Initial variance for instrument error states

(3) State noise variance for package input states

The standard deviation is input to the program.
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(4) State noise variance for instrument error states

(5) Variance for measurement errors

(6) Time constant for package input states

(7) Time constant for instrument error states

(8) Threshold for residuals

(9) Ratio of threshold for instrument error states to instru-
ment error standard deviation.

The flow diagram description follows:

(1) The estimated state 9 vector x, the state covariance matrix
P, the state transition matrix., the state noise covari-
ance matrix Q, the measurement noise matrix R, and
the measurement matrix H are initialized before the trial.

(2) Each minor cycle the state vector and covariance matrix
are advanced.

(3) Temporary working values of the state vector and covari-
ance matrix, x' and P', are stored. The instrument state
is zeroed.

th(4) The jth residual is calculated.

(5) The j residual is tested against the high level threshold.

(6) If the residual is less than the threshold, the filter matrix
K. is calculated, and x' and P' are reset.
3

(7) If the residual is greater than the threshold, the jth instru-
ment state is set equal to 1.

(8) The low-level failure detection and isolation process
begins by setting i and SMAX to 0.

(9) If the jth instrument was excluded from the current reset,
IT will be nonzero.

(10) If the jth instrument was excluded from the current reset,
low-level failure detection is not performed.

(11) The estimate of the jth instrument error is squared.

*The standard deviation is input to the program.
**Used to calculate the state transition matrix.
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(12) If the square is less than the squared threshold times the
instrument error variance, the instrument is not failed.

(13) - (14) At the end of the loop, SMAX will equal the squared
error of the instrument having the largest error, and i
will equal the number of the same instrument. If the error
of no instrument exceeds the threshold, SMAX and i will
be equal to 0.

(15) If i is not equal to 0, a failure has been detected.

(16) If a failure has been detected, the i t h instrument error
estimate is set to a large value. Subsequently, the state
of that instrument will always be set equal to 1 in Step 7.
The filter calculations are now repeated with instrument
i excluded.

(17) If no failures have been detected, the state vector and
covariance matrix are updated from the working values.
The first three elements of x comprise the output to the
strapdown algorithm.
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4. STRAPDOWN INERTIAL PACKAGE MODEL

The strapdown inertial package model simulates the operation of

the package in the navigate mode only. The calibration and alignment

functions are assumed to have been completed prior to the commencement

of a computer run. Thus the errors simulated do not represent the total

instrument and package errors, but only the residual errors remaining

after calibration.

Because of computing time restraints, it is out of the question to

simulate a cruise-type system for any significant length of time. Thus a

boost-type system has been chosen. It should be adequate to allow the

candidate algorithms to compete meaningfully against each other.

4. 1 INSTRUMENT CONFIGURATION

The gyro and accelerometer input axis orientations with respect to

the package axes are defined by the A matrix given in Eq. 3-2. It is

assumed that the gyros and accelerometers are defined by the same A

matrix (that is by the same dodecahedron orientation) because, although

it is conceivable that a system could be designed with different dodecahe-

dron orientations for the gyros and the accelerometers, nobody has done

so, so that the added complexity required in the simulation to treat this

case would probably be wasteful.

The orientation of each gyro and accelerometer about its input axis

is defined by the angles 0 - g and gOa - 1a, which are positive
g 1 g6 a 6

rotations about the input axis from a reference orientation. When an

instrument is in the reference orientation, its output axis lies along the

positive direction of one of the package axes. From the matrix A and the

12 orientation angles, it is possible to determine the 12 matrices

AG1-AG6 and AA1-AA6 that relate individual gyro input, output, and spin

axes and accelerometer input, pendulous, and output axes to package axes.

We have, for the gyros,

input )

x :utput =AGi y (4-1)

spin zPackage
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and, for the accelerometers,

. c
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where

C. cos 0 or cos 0 (4-9)

S. = sin 0 or sin O (4-10)1 gi a1

Note that the first row of AGi and AAi equals the i
t

h row of A.

Except for a relabeling of instruments and a rotation of 180 deg

about certain of the instrument axes, the reference instrument orientations

correspond to those of Gilmore' s SIRU. The instrument labels and

180 deg rotations have no significance to a simulation of this type.

Table 4-I shows the relabeling required and the axes about which

a 180-deg rotation is required to achieve correspondence between the'

gyro axes for the reference orientation and SIRU.

In SIRU the accelerometer input and output axes are the same as for

the gyros, and the pendulous axis is the negative of the gyro spin axis.

The same relationship holds in the simulation whenever the 8g and eai

are identical. 1

The MSFC breadboard dodecahedron (BB DDH) uses single-axis

platforms, so that the directions of the output and spin axes vary with

time. This feature is not modeled in the simulation, as it is felt that it

would have no impact on the relative performance of the FDIC algorithms

and would increase computer time requirements.

Table 4-L Simulation - SIRU Correspondence

Simulation SIRU

Gyro Gyro Axis

1 C Output

2 D Spin

3 E None

4 F Spin

5 'A None'

6 B Input

*This rotation may be
accomplished by eg6 = 180 deg.
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The package axes are related to the body axes by a matrix R

Xpackage =R Xbody (4-11)

where R is defined as the product of three single-axis orthogonal rotation

matrices

R = T( R, i R2R2) T( R1 R1) (4-12)

thwhere T(x, m) is a rotation through the angle x about the m axis. The

angles OR, R 2, and 8R3 and the axis indicators iR , iR , and iR
3

are
all read in as data. Note that the rotations from body-to-package axes

are about axes iR, iR, and iR through angles R- 0eR and 0
1 R 1R 3 R , R R3,

respectively, in that order. Since iR , iR , and iR can each take on
any of the values 1, 2, or 3, any order of rotations is possible.

4.2 UNFAILED INSTRUMENT ERRORS

The unfailed instrument simulation must exhibit errors, since it is

the errors of the normally operating instruments that make the failure
detection process difficult. However, the simulation of errors should not
be excessively detailed and exhaustive because of the resultant penalties

in computer time and storage. Therefore, a limited set of relatively

easily calculated errors has been selected. Their combined character-

istics are complex enough so that they do not correspond to any of the

simple error models hypothesized in the derivation of the different

algorithms. For the numerical values of the errors, see Paragraph 6. 2. 4,

Appendix A, and Reference 30.

4.2. 1 Gyro Errors

The error in a gyro output is given by

= E 1 + E 2 n + E3 Xi + E4 o + E5 o

(4-13)
+ E ai + E 7 a+ E as + E a ai61i 7 0\ 8 s 9. i s

86



where the errors are:

(1) Bias drift rate

(2) Random drift rate

(3) Scale factor error

(4) Input axis misalignment about spin axis towards output
axis

(5) Input axis misalignment about output axis towards spin
axis

(6) Acceleration sensitivity along input axis (spin axis
mass unbalance)

(7) Acceleration sensitivity along output axis

(8) Acceleration sensitivity along spin axis (input axis
mass unbalance)

(9) Anisoelastic drift rate.

The standard deviations of the quantities E 1 through E 9 are input.

Independent values of E 1 through E 9 are obtained for each gyro by the

Monte Carlo method.

In addition to the above errors, there are errors introduced by the

sampling and quantization process. The gyro output angular velocities

are integrated over one sampling period. The result is then quantized.

The error resulting from the quantization process is retained and added

to the result of the integration over the next sampling period. This tech-

nique simulates the storage of quantization error information in the gyro

float that occurs in an actual gyro.

4. 2. 2 Accelerometer Errors

The error in an accelerometer output is given by

· = E 1 + E 2 n + E
3

a
i

+ E
4

ap + E 5 a

where the errors are

(1) Bias

(2) Random error
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(3) Scale factor error

(4) Input axis misalignment about output axis towards
pendulous axis (or pendulous axis acceleration
sensitivity)

(5) Input axis misalignment about pendulous axis towards
output axis (or output axis acceleration sensitivity).

The quantities E 1 through E5 are input as for gyros. The acceler-

ometer outputs are integrated, sampled, and quantized in the same manner

as the gyro outputs.

4. 3 STRAPDOWN ALGORITHM

The incremental velocity and angle outputs of each FDIC algorithm

go to a strapdown algorithm that performs the attitude and inertial velo-

city calculations. All of the strapdown algorithms are identical.

The gravity calculations have only a minor effect on the propagation

of errors in a boost inertial navigation system. Therefore, they are

eliminated from the trajectory generator and each strapdown algorithm

in order to save computer time and storage. The velocity errors at injec-

tion have a much stronger effect on navigational performance than do the

position errors. Since position is no longer needed for the gravity calcu-

lations, the position integration can also be eliminated from the trajectory

.generator and each strapdown algorithm. These simplifications should

have very little effect on the performance of the FDIC algorithms.

The strapdown algorithm is based on the approach described in

Reference 31, with an improved attitude algorithm. The attitude algorithm

chosen is McKern's third-order quaternion algorithm3 2 that is used in

SIRU. This algorithm is accurate and efficient and includes a correction

for computation errors. The incremental quaternion Ap is calculated

from the incremental angle vector 4 by

A - 48 24

where c * is the incremental angle vector from the' preceding sampling

period. The quaternion representing the vehicle orientation is updated by

-p Ap (4-15)
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The velocity in body axes is updated by Yachter's algorithm3 3 ' 3

VB V B + AV t- ~x + (4-16)

At a slower frequency, vB is transformed into inertial axes and the result

is added to the inertial velocity v
I

. At the same time, vB is zeroed in

Eq. 4-16.

vi- v
i
+ B vB (4-17)

where B is defined in terms of p

2 2 2 2
P1 - 2 - p3 + p4 2(P1 P2 - P3 P4 ) 2(p 3 P1 + P2 P4 )

~~~~~~2 2 2 2
2(Pl P2 + P3 P4) - P1 + P2 - P3 + P4 2(p2 P3 - Pl P4)

2(P3 P1 - P2 P4 ) 2(P2 P3 + P1 P4 ) - P - P2 + P3 + P4

(4-18)

4.4 TRAJECTORY

The trajectory consists of two parts, a nominal trajectory and

superimposed vibrational motions. The trajectory remains the same

throughout a run. The statistics of the vibrational motions remain the

same throughout a case. The actual vibrational motions are Monte Carloed

and vary from trial to trial.

4.4. 1 Nominal Trajectory

The nominal trajectory is specified to FAILSIM by means of a sub-

routine, TRAJ. The acceleration and angular velocity are calculated in

TRAJ by piecewise analytical functions of time which are written in

FORTRAN. Discontinuities are permitted between the pieces, provided

they occur at integral multiples of the minor cycle period At.

4. 4. 2 Vibrational Motions

The translational and rotational vibrational accelerations are

generated by means of gaussian pseudorandom numbers, which are filtered
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by first-order difference equations so as to obtain first-order Gauss-

Markov random processes. If unmodified, such accelerations would

cause the translational and rotational velocities to random walk away

from the nominal. To prevent this, the accelerations are passed through

high-pass filters made by feeding back the velocity and position changes

caused by the vibration through gains as shown in Figure 4-1. In the

figure, n is white noise, m is the Gauss-Markov process, and a, v,

and p are the translational and rotational acceleration, velocity, and

position, respectively. In the cases of the three rotational vibrations

and two of the translational vibrations, the feedback can be considered

to represent the vehicle attitude control and guidance systems. For

the vehicle longitudinal axis, no physical significance can be ascribed

to the translational vibration feedback, and the gains may be set to

zero if the random walk can be tolerated in this axis.

1 a

v

P

Figure 4-1. Vibrational Motion Generator

The first-order difference equation which represents the low-pass

filter that generates the Gauss-Markov process is \

(4-19)mi+1 = K m. + K b ni+a 1 bni+l1
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In order to make mcorrelated with time constant T, we require that

<mi+l m T

<mi 2 >

(4-20)

where T is the sampling period. Therefore,

-T_T

K =e
a

(4-21)

The constant Kb will be adjusted to give the desired variance of the

vibrational acceleration at the output of the high-pass filter. First let us

find the Z transform of Eq. 4-19

(4-22)zm =K m + Kb Z n

G
(z )

= n KbZ
G 1(Z) m z- K

a
(4-23)

Now let us find a sampled data approximation to the high-pass filter from

Figure 4-1,

G
Z

(s) =
2

S
(4-24)

s +K s+K
v p

-2 z -1
S Tz+l

G 2 (z) = ° 1

z +A
1
z+A

2

(4-25)

(4-26)
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where

Z (K T' - 4
A= \P (4-27)1 2

4+2K T+K T
v p

4-2K T+K T
A2 = v p (4-28)

4+2K T+K T
v p

B =B 2 =4 4 2 (4-29)
° 24 + 2 K T +K T

V p

B 1 = -2 B (4-30)

The combined transfer function is

Kbz B z + B
1

z + B
G (z) = G1 (z)2 (4-31)

a z +A
1

z+A 2

The power spectral density of the random number sequence is

1
nn (Z) 2iT (4-32)nn 2IT

and the power spectral density of the filter output is

(z) = G (z) G (z
-

1
) (z) (4-33)aa nn

The variance of the filter output is

2a jT aa (z) z1 dz (unit circle) (4-34)

92



From Eqs. 4-31, 4-32, 4-33, and 4-28

2 Kb Boz + B 1 + BZ )B 
z
-

+ B 1Z- + B0 K dz
a 2 j z - K)( A + Al) + A

1
z + Al + A2 ) - K

(4-35)

From the residue theorem

2 =Kb ZRes (PK) (4-36)

where PK are those poles of the integral which lie within the unit circle;

thus Kb is

aKb= a (4_37)

The residues are evaluated, and Kb is calculated in subroutine FKB.

For the angular vibrations, the velocity as well as the acceleration

is required. The transfer function from m to v is

G 3 (s) 2 (4-38)
s +K s+K

v p

If we apply Eq. 4-25 again,

2
C z + C Z+ C

G (Z) = 20 1 2 (4-39)

z + Az + A2

where

2T
C =2T (4-40)

0 4+2K T+K TZ
P P

Cl = 0 (4-41)

C2 = -C (4-42)O
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Figure 4-2 shows a block diagram of a sampled data system which

can give both a and v. The equations which must be solved by the computer

are

m -Kam + Kbn
a b

a - a.

a 2 -3

a3- m - A 1 a
Z

- A
2

a1

a - B a
3

+ B
1

a
2

B2 al1

v-C 0 a
3

+ C
2

al1

(4-43)

(4-44)

(4-45)

(4-46)

(4-47)

(4-48)

-bv

a

1+

Figure 4-2. Sampled Data Vibrational Motion Generator
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in that order. Initially al, az, and a3 are set equal to zero; m is initially

Kbn
m = (4-49)

,_-K 2
a

The translational acceleration experienced by the strapdown package

is a combination of the translational acceleration of the center of mass of

the vehicle and the effect of the rotational acceleration and velocity on the

lever arm between the center of mass and the package. This effect may

be represented by

TOT TRANS ROT ROT3 ) (4-50)

aTOTZ aRANS + R aROT3 (4-51)
TOT 2 TRANS 2 ROT 3

aTOT3 aTRANS3 R aROT (4-52)

where the lever arm, of length R, is assumed to lie along the 1 axis.

4. 5 USE OF INPUTS FROM REAL INSTRUMENTS

The simulation program is capable of accepting the outputs of real

instruments on a strapdown package mounted on a test table and bypassing

the computation of simulated instrument outputs. Since the MSFC package

has only three accelerometers, an option is provided to convert their

three outputs into six outputs, which the FDIC then converts back into

three outputs. Since the simulation program has no calibration, alignment,

or compensation calculations, the outputs of real instruments must be suit-

ably compensated before being input to the program. Failures are to be

induced in the instrument hardware.

A strapdown package on a test table is unaccelerated, so that the

ideal inertial velocity can be calculated without knowledge of the package

orientation. Since the FAILSIM strapdown algorithms have no gravity

calculation, the ideal inertial velocity cannot be obtained merely by trans-

forming the test table velocity into inertial axes. Instead, the total sensed

acceleration must be integrated.
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The initial inertial velocity may be taken as zero, and the initial

acceleration of gravity vector may be taken as lying in the X-Z plane of

the inertial coordinate system without loss of generality. Thus the acceler-

ation vector inrnrtdal 69

cos L cos t )
a = g cos L sin t (4-53)

sin L

and the velocity vector is the integral of Eq. 4-53

1 cos L sin s t

1v = g cos L (1 - cos 02t) (4-54)

t sin L

where

L = astronomic latitude of test table

g = magnitude of gravity vector at test table

[ = earth rate.

The initial package orientation must be known in order to initialize

the quaternion in each strapdown algorithm. The quaternion defining

up-east-north (UEN) axes with respect to inertial axes is

L L
PL = cos - j sin L (4-55)

The initial orientation of the package axes with respect to UEN axes is

represented by rotations about three axes taken in any order. The total

quaternion describing the initial orientation of the body axes with respect

to inertial axes is

P = PL P(0P 1 ' iP 1 ) P(eP 2 , ip 2 ) P(ep3 ' ip 3 ) (4-56)
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where p(x,m) is a quaternion representing a rotation through the angle x

about the mth axis. The angles Op1 , Op2, and Op3 and the axis indicators

iPl, ip 2 , and ip 3 are all read in as data. Note that the rotations from

UEN to package axes are about package axes iPl, ip2 , and ip3 , through

angles Op1 , Op 2 , and Op3 , respectively, in that order. Since ipl, ip 2 ,

and ip
3
can each take on any of the values 1, 2, or 3, any order of

rotation is possible.

Since FAILSIM has no way of knowing the test table rotations, the

ideal quaternion computation cannot be performed. Therefore, the test

table should be returned to its initial orientation at the end of the run so

that the initial quaternion can also serve as the ideal quaternion for cal-

culation of the orientation errors at the end of the run.
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5. FAILURE MODES

A representative set of gyro and accelerometer failure modes is

chosen. Although all possible failure modes are not included, and those

included may be represented in a somewhat simplified manner, they are

sufficiently varied in nature to give the competing FDIC algorithms a

good testing. Both hard and soft errors are included.

There are two types of failure modes to be simulated. The additive

failure modes add to the output produced by the instrument in unfailed

operation. For example, a shift in the bias drift would not alter the

response of a gyro to inputs. The substitutional failure modes substitute

an incorrect output for the correct one. The incorrect output is indepen-

dent of the output that would be produced by the instrument if it were

unfailed. For example, a failed instrument could produce zero output.

Each failure will be characterized by the following parameters:

e Time of failure

o Time failure disappears (for representing glitches)

* Which instrument fails

· Failure mode.

In addition, certain failures will be characterized by algebraic values

or standard deviations, as described below.

5.1 GYRO FAILURES

5. 1. 1 Additive Failure Modes

Mode 1: Bias Drift Rate Shift

The gyro drift rate shift is a step function in angular velocity.

Either the algebraic value of the shift may be input directly or it may be

Monte Carloed. If it is Monte Carloed, the amount of the shift is obtained

as a gaussian pseudorandom number with a specified standard deviation.

The gaussian model for the underlying process that causes shifts

in bias drift is not based on any actual failure data, but seems to be a

reasonable choice. However, for there to be a failure, the shift must be

greater than some threshold value. This value must be specified before
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one can accumulate empirical failure rate or MTBF data on a real gyro.

Obviously, the lower this value is, the higher the failure rate will seem

to be. This threshold value is input to the program along with the stan-

dard deviation. If the magnitude of the gaussian pseudorandom number is

less than the threshold value, it is rejected and a new random number is

chosen.

The threshold value should be chosen high enough to exclude "fail-

ures" that really look like normal operation. If not excluded, such

failures would artificially raise the missed alarm rates for all algorithms.

Although such a circumstance would not be unfair to any particular algo-

rithm, it would tend to interfere with the interpretation of the statistics

gathered during the simulation process.

The threshold value should be chosen low enough so as not to exclude

soft failures, since they are the hardest type of failure to detect and iso-

late, and determining the performance of the competing algorithms in

their presence is essential.

It can be shown that, if the standard deviation of the original gaus-

sian distribution is o1 and the threshold level is a, then the standard devi-

ation of the modified distribution after the rejection process is given by

·2 where

2 2 a l1 exp (-a2 /2ia2)
o2 = cr + 1 2 (5-1)

v2 1,r exp (-x2 /2)- (1

Mode 2: Drift Rate Ramp

The drift rate ramp is a ramp function in angular velocity. Either

the algebraic value of the shift may be input directly or it may be Monte

Carloed. If it is Monte Carloed, a standard deviation and threshold value

are input.

99,



Mode 3: Random Drift

The random drift is modeled as white noise in angular velocity.

The random drift failures are modeled the same way with a larger stan-

dard deviation. Either the standard deviation may be input directly or it

may be Monte Carloed. If it is Monte Carloed, a standard deviation and

threshold value are input.

Mode 4: Scale Factor Shift

The scale factor shift is a step function. Its parameters are simi-

lar to those of Modes 1 and 2.

Mode 5: Mass Shift

A mass shift is modeled as a change in acceleration sensitivity about

the input and spin axes. Either the algebraic values of the two components

of the acceleration sensitivity may be input directly or they may be Monte

Carloed as before. If they are Monte Carloed, the same standard devia-

tion will be used for each axis, giving circular symmetry to the error

probability function. A threshold value is input as before, except that it

is applied to the magnitude of the 2-vector formed by the two components

so as to preserve the circular symmetry.

5. 1. 2 Substitutional Failure Modes

Mode 6: Zero Output

The gyro output will be zero.

Mode 7: Maximum Output

Either the algebraic value of the maximum output may be input

directly or it may be Monte Carloed. If it is Monte Carloed, the magni-

tude of the maximum value is assigned a plus or minus sign by means

of a uniform pseudorandom number.

5. 2 ACCELEROMETER FAILURES

5. 2. 1 Additive Failure Modes

Mode 1: Bias Shift

The accelerometer bias shift is a step function in acceleration. Its

parameters are similar to those of gyro Mode 1.
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Mode 2: Ramp Error

The accelerometer ramp error is a ramp function in acceleration.

Its parameters are simular to those of gyro Mode 2.

Mode 3: Random Error

The random error is modeled as white noise in acceleration. Its

parameters are similar to those of gyro Mode 3.

Mode 4: Scale Factor Shift

The scale factor shift is a step function. Its parameters are simi-

lar to those of gyro Mode 4.

5. 2.2 Substitutional Failure Modes

Mode 6: Zero Output

The accelerometer output will be zero.

Mode 7: Maximum Output

The maximum output mode is similar to gyro Mode 7.
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6. FAILSIM

The simulation computer program, FAILSIM, is written in

FORTRAN iV for the CDC 6400/6500 computer. It was prepared by means

of the TRW Timeshare System (TRW/TSS).

6.1 PROGRAM STRUCTURE

Figure 6-1 shows the FAILSIM flow diagram. At the beginning of

a run, the data are preset. Then the data for the first case are read in.

When no data are found, the run ends. Eight separate subroutines are used

to calculate those quantities in each FDIC algorithm that remains constant

throughout a case. The remainder of the program is then initialized for

the next case.

The outer loop is on Monte Carlo trials. Nine separate subroutines

are used to initialize the FDIC algorithms and strapdown algorithms. The

remainder of the program is then initialized for the next trial.

The next loop is on major cycles. It counts the number of major

cycles in the trial. The next loop is on trajectory steps. The trajectory

steps are the periods over which no trajectory discontinuities are per-

missible. The innermost loop is on minor cycles. (For example, on a

typical case the major cycle time is 1 sec, and the minor cycle time is

1/8 sec. The trajectory was obtained from a tape having data points

spaced 1/2 sec, so that discontinuities can occur only at the 1/2-sec

points. The minor cycle loop counts four minor cycles per trajectory

step, the trajectory step loop counts two steps per major cycle, and the

major cycle loop counts 400 major cycles per 400-sec flight.)

The failure programmer generates the instrument errors caused by

failures. The trajectory generator generates the nominal acceleration

and angular velocity and combines them with the vibrational acceleration

and angular velocity. The unfailed instrument errors are generated.

Fourth-order Runge-Kutta-Gill integration is used to obtain the ideal

attitude and inertial velocity and the unquantized instrument outputs. The

sampling, quantization, and substitutional failures are then processed.

Nine separate subroutines are used to perform the minor cycle calculations
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Figure 6-1. FAILSIM Flow Diagram
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which include the different FDIC algorithms and identical strapdown

minor cycle algorithms.

Nine separate subroutines are used to perform the strapdown major

cycle algorithms. The attitude and inertial velocity errors are written

on the plot tape.

At the end of a trial, its statistics are stored. The trial results

are printed out.

At the end of a case, the statistics are processed and printed out.

The data for the next case are then read in.

The program has been written with a modular structure so that any

algorithm can be readily removed for use elsewhere. Each algorithm

comprises four subroutines:

CONSTi: evaluate constants

INITi: initialize variables

MAJi: major cycle calculations

MINi: minor cycle calculations

(There are two exceptions: the nominal algorithm has no constants so that

there is no CONSTO, and the Minimax Algorithm has a fifth subroutine,

SPHERE, that performs the Bounding Sphere Algorithm when it has been

selected. )

In each of the minor cycle subroutines MINi, the gyro and accel-

erometer FDICs are coded separately to avoid the loss of time that

would have occurred in the calling sequence if a single subroutine were

used for both. The subroutine SPHERE is an exception to this policy.

In addition to the algorithm subroutines described above, FAILSIM

is divided up into subprograms which will now be described.

FAIL. FAIL is the main program. It embodies the structure de-

scribed above and all of the computations not relegated to the other

subprograms.

DERIV1. DERIV1 is a subroutine that calculates the derivatives of

the ideal attitude parameters (quaternions or Euler parameters) and the

ideal inertial velocity.
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DERIV2. DERIV2 is a subroutine that calculates the derivatives of

the instrument outputs. The package inputs are resolved into instrument

axes. The ideal instrument inputs are found and modified by both unfailed

errors and additive failures to obtain the derivatives of the actual outputs.

EVENT. EVENT is a subroutine that notes changes in the instru-

ment states, prints out messages when changes occur, and accumulates

statistics on the changes.

FKB. FKB is a function that solves for Kb (Paragraph 4. 4. 2)

GAUSS. GAUSS is a function that converts uniform pseudorandom

numbers into gaussian pseudorandom numbers.

ORIENT. ORIENT is a subroutine that computes the matrices A, C,

and F of Paragraph 3.1. 2, the matrix R, and the matrices AG1 to AG6

and AAl to AA6 of Subsection 4. 1 and their products with R, and the masks

AMASK and OMASK used in the various algorithms.

PACKAGE. PACKAGE is a subroutine that reads in the external

strapdown package instrument output tape data and unbuffers it. If the

external package has three accelerometers, six pseudo accelerometer

outputs are generated for compatibility with FAILSIM.

PLOT. PLOT is a subroutine that finds the orientation errors in

arc sec and the inertial velocity errors in m/sec and writes them out on

the plot tape.

QUAT. QUAT is a subroutine that calculates a quaternion for a

given angle and coordinate axis and premultiplies it by an input quaternion

to obtain an output quaternion.

READIN. READIN is a subroutine that reads in the program inputs,

converts units for inputs not directly involving the algorithms themselves,

and prints out all of the inputs. (Algorithm inputs have their units con-

verted in the CONSTi subroutines. )

SYMINV. SYMINV is a subroutine that inverts a symmetric matrix

of order 3 (only the upper triangular elements of the input matrix are

required; all elements of the output matrix are supplied).

TMAT. TMAT is a subroutine that calculates a rotation matrix for

a given angle and coordinate axis and post-multiplies it by an input matrix

to obtain an output matrix.
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TRAJ. TRAJ is a subroutine that calculates the nominal angular

velocity and nominal acceleration for a specific trajectory.

6. 2 INPUTS

With the exception of taped data from an external strapdown package

(Paragraph 6. 2. 6) and the nominal trajectory subroutine (Paragraph 6. 2. 8),

all of the program inputs are entered by means of the NAMELIST feature.

At the beginning of a run, all of the data is preset to 0 except IRDM,

which is preset to 1. None of the input data is changed during a case,

with the exception of IRDM, which always indicates the next pseudorandom

number.

Only those inputs which differ from 0 (or 1 in the case of IRDM)

need be read in for the first case of a run. For subsequent cases in the

run, only those inputs that differ from the inputs of the preceding case

need be read in, with the exception of IRDM. If IRDM is desired to be

the same for all cases, it must be included in the inputs to each case.

Otherwise, each case will begin with a new pseudorandom number. In

case it is desired to begin a run with the pseudorandom number from the

end of a preceding run, IRDM is printed out at the end of each trial. A

typical set of data is shown in Appendix A.

6. 2. 1 Program Control (Subsection 6. 1)

Variable Units Description

DT sec Minor cycle period

IRDM Initial random number
(odd integer)

LMONTE 0 = deterministic
failures

1 = Monte Carlo
failures

LPLOT 0 = no plot tape made

1 = plot tape made

N1MAX Number of Monte Carlo
trials per case

N2MAX Number of major cycles
per trial
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Description

Number of trajectory
steps per major cycle

Number of minor cycles
per step

6. 2. Z Vehicle Vibrational Motions (Paragraph 4. 4. 2)

Variable

AVBS(1:3)

Units

rad/sec2

Description

Rotational acceleration,
vibration, body, standard
deviation

AVBS(4:6)

TAUV(1:6)

KV(1:6)

KP(1:6)

RADIUS

m/sec2

sec

-1
sec

-2sec

m

Translational acceleration,
vibration, body, standard
deviation

Vibration time constants

Vibration velocity
feedback gain

Vibration position
feedback gain

Distance from vehicle
c. m. to strapdown
package

6. 2.3 Instrument Orientation (Subsection 4. 1)

Variable

IR1

THTR 1 I

IRZ

THTR2I

Units De s cription

Axis of first rotation for
R matrix

deg Angle of first rotation for
R matrix

Axis of second rotation
for R matrix

deg

IR3

Angle of second rotation
for R matrix

Axis of third rotation for
R matrix

THTR3I deg Angle of third rotation for
R matrix

107

N4MAX

Variable Units

N3MAX



Variable

THTAI(1:6)

THTGI(1:6)

6. 2. 4 Unfailed Errors

Units

deg

deg

Description

Output axis location angles
for accelerometers

Output axis location angles
for gyros

(Subsection 4. 2)

Variable

SIGUFEA (1)

SIGUFEA (2)

SIGUFEA(3)

SIGUFEA(4)

SIGUFEA(5)

SIGUFEG(1)

SIGUFEG (2 )

SIG UFEG(3)

SIGUFEG(4)

SIGUFEG (5)

SIG UFEG(6)

SIGUFEG (7)

SIGUFEG(8)

SIGUFEG(9)

QACCI

QGYROI

Units

Lg

(pg)2/(rad/sec)

ppm

arc sec

arc sec

deg/hr

(deg/hr) /
(rad/sec)

ppm

arc sec

arc sec

deg/hr/g

deg/hr/g

deg/hr/g

deg/hr/g2

cm/sec/pulse

arc sec/pulse

Description

Bias

Random

Scale factor

Misalignment

Mis alignment

Bias

Random

Scale factor

Mis alignment

Mis alignment

Acceleration sensitivity

Acceleration sensitivity

Acceleration sensitivity

Anisoelastic drift

Accelerometer quantization

Gyro quantization
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6. 2. 5 Failures (Section 5)

Up to 14 failures or healings are possible in a case.

Variable Description

NFAIL(1: 14) Number of minor cycles
before failure or healing

NINST(1:14) Number of failed or
healed instrument

NINST = 1:6 failure of gyro No. NINST

NINST = 7:12 failure of accelerometer No. NINST-6

MODE(1:14) Failure mode

For gyros MODE = 0 Healing

1 Bias drift rate shift

2 Drift rate ramp

3 Random drift

4 Scale factor shift

5. Mass shift

6 Zero output

7 Maximum output

For acc. MODE = 0 Healing

1 Bias shift

2 Ramp error

3 Random error

4 Scale factor shift

5

6 Zero output

7 Maximum output

FAIL1 I(1: 14)

FAILZI(1: 14)

First failure parameter

Second failure parameter
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The units and definitions of FAILlI and FAIL2I depend upon the

corresponding values of NINST and MODE, and upon the value of

LMONTE. For LMONTE = 0 (deterministic failures) and NINST = 1:6

(gyros)

MODE = 0,

MODE = 1,

MODE = 2,

MODE = 3,

MODE = 4,

MODE = 5,

MODE

MODE

For LMONTE =

MODE

MODE

MODE

MODE

FAIL 1I
FAIL2I

FAILII

FAIL2I

FAIL1I

FAIL2I

FAIL1I

FAIL2I

FAIL1I

FAIL2I

FAIL1I

FAIL2I

= 6, FAILII
FAIL2I

= 7, FAIL1I

FAIL2I

0 (deterministic failures) and

= 0, FAIL1I
FAIL2I

= 1, FAIL1I
FAIL2I

= 2, FAIL1I

FAIL2I

= 3, FAILII

FAIL2I

Not required
Not required

deg/hr, value of bias
drift rate shift
Not required

deg/hr , value of drift
rate ramp
Not required

(deg/hr) 2/(rad/sec),
random failure p. s. d.
Not required

ppm, value of scale factor
shift
Not required

deg/hr/g, mass shift
along spin axis
deg/hr/g, mass shift
along input axis

Not required
Not required

deg/sec, value of
maximum output
Not required

NINST = 7:12 (acc.)

Not required
Not required

jig, value of bias shift
Not required

[g/hr, value of ramp
error
Not required

(ig) /(rad/sec), random
failure p. s. d.
Not required
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MODE = 4,

MODE = 6,

MODE = 7,

For LMONTE = 1

MODE =

(Monte

0,

MODE = 1,

MODE = 2,

MODE = 3,

MODE = 4,

MODE = 5,

MODE = 6,

MODE = 7,

For LMONTE - 1 (Monte

MODE = 0,

MODE = 1,

FAIL1I ppm, value of scale factor
shift

FAIL2I Not required

FAIL1I Not required
FAIL2I Not required

FAIL1I g, value of maximum
output

FAILZI Not required

Carlo failure) and NINST = 1:6 (gyros)

FAIL1I Not required
FAIL2I Not required

FAIL1I deg/hr, s.d. of bias drift
rate shift

FAIL2I deg/hr, threshold

FAIL1I deg/hr2, s. d. of drift
rate ramp

FAILZI deg/hr2, threshold

FAIL1I (deg/hr)2 /(rad/sec) s.d.
of random failure p. s. d.

FAIL2I (deg/hr)2 /(rad/sec),
threshold

FAILI ppm, s.d. of scale factor
shift

FAIL2I ppm, threshold

FAILlI deg/hr/g, s.d. of mass
shift

FAIL2I deg/hr/g, threshold

FAIL1I Not required
FAIL2I Not required

FAIL1I deg/sec, magnitude of
maximum output

FAIL2I Not required

Carlo failures) and NINST = 7:12 (acc.)

FAIL1I Not required
FAIL2I Not required

FAIL1I ig, s.d. of bias shift
FAIL2I pg, threshold
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MODE = 2, FAILlI

FAIL2I

MODE = 3, FAILlI

FAIL2I

pg/hr, s. d. of ramp
error
4g/hr, threshold

(1lg) /(rad/sec), s.d. of
random failure p. s. d.
(pLg) 2 /(rad/sec), threshold

MODE = 4, FAILlI

FAIL2I

MODE = 6, FAIL I
FAIL2I

ppm, s.d. of scale factor
shift
ppm, threshold

Not required
Not required

MODE = 7, FAIL11I

FAIL2I

g, magnitude of maximum
output
Not required

6. 2. 6 External Strapdown Package (Section 4. 5)

Description

O = Internal strapdown
package

1 = External strapdown
package, 6 gyros and
3 accelerometers

2 = External strapdown
package, 6 gyros and
6 accelerometers

(The following inputs are not required if LPACK is zero).

IRHC)1

THTRH1I

IRH02

THTRH2I

IRH03

THTRH3I

Axis of first rotation for
initial quaternion

deg Angle of first rotation for
initial quaternion

Axis of second rotation for
initial quaternion

deg Angle of second rotation
for initial quaternion

Axis of third rotation for
initial quaternion

deg Angle of third rotation for
initial quaternion
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Variable

LATI

Units

deg

G

OMEGA rad/sec

Description

Astronomic latitude of
test table

Acceleration of gravity at
test table

Earth rate

The compensated instrument outputs in units of rad and m/sec must

appear on a binary format magnetic tape to be read by logical unit 15.

Each record on the tape must contain 505 or fewer words. The first

word is an integer less than or equal to 504 and equal to the number of

words following it in the record. If LPACK equals 1, there may be up

to 56 nine-word data sets in the record, each data set containing the six

gyro outputs followed by the three accelerometer outputs. If LPACK

equals 2, there may be up to 42 twelve-word data sets in the record, each

data set containing the six gyro outputs followed by the six accelerometer

outputs.

6. 2. 7 Algorithms (Subsection 3. 2)

Nominal Algorithm

DescriptionVariable

LALGO 0 = do not use algorithm

1 = use algorithm

Adaptive 66 Algorithm

Variable

LALG1

Units Des cription

0 = do not use algorithm

I = use algorithm
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(The following inputs are

EPSOA

., X- a v G

TAUPAQ(l)

TAUPGQ( 1 )

CRIT1

Fifteen Threshold A

Variable

LALG2

(The following inputs are

THAI

THGI

TAUPAQ(2)

TAUPGQ(2)

not required if LALG1 is zero)

f9g Unfailed acc. error s. d.

uegi/ir unfailed gyro error s. d.

sec Acc. prefilter time
constant

sec Gyro prefilter time
constant

Loop termination
criterion

1lgorithm

Units Description

0 = Do not use algorithm

1 = Use algorithm

not required if LALGZ is zero)

CLg Acc. threshold

deg/hr Gyro threshold

sec Acc. prefilter time
constant

sec Gyro prefilter time
constant

Squared Error Algorithm

Variable Units Description

LALG3 0 = Do not use algorithm

1 = Use algorithm

(The following inputs are not required if LALG3 is zero)

AKlI FLg Acc. TSE threshold,
first failure

AKZI Acc. SE/TSE threshold,
first failure

AK3I pg Acc. TSE threshold,
second failure
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Variable

AK4I

GK1I

GK2I

GK3I

GK4I

TAUPAQ(3)

TAUPGQ(3)

AKGDI

LHEAL

Units

deg/hr

deg/hr

sec

sec

(deg/sec) 1

Description

Acc. SE/TSE threshold,
second failure

Gyro TSE threshold, first
failure

Gyro SE/TSE threshold,
first failure

Gyro TSE threshold,
second failure

Gyro SE/TSE threshold,
second failure

Acc. prefilter time
constant

Gyro prefilter time
constant

Gyro dynamic error
compensation gain

0 = no reinstatement
pe rmitte d

1 = reinstatement
permitted

Bayesian Decision '

Variable

LALG4

(The following inputs are

THAlI

THA2I

THG1I

THG2I

rheory Algorithm

Units Description

0 = do not use algorithm

1 = use algorithm

not required if LALG4 is zero).

19g Acc. threshold, first
failure

pLg Acc. threshold, second
failure

deg/hr Gyro threshold, first
failure

deg/hr Gyro threshold, second
failure
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Variable

TAUPAQ(4)

TAUPGQ(4)

Units

sec

sec

Maximum Likelihood Algorithm

Variable Units

LALG5

SIGQA O

SIGQG 0

TAUPAQ(5)

TAUPGQ(5)

CRIT5

Minimax Algorithm

Variable

~g

deg/hr

sec

sec

Units

LA LG6

(The following inputs are not required if LALG(

LSQA

LSQG

THAMI

THASI

lg

p-g

De s cription

Acc. prefilter time
constant

Gyro prefilter time
constant

Description

O = do not algorithm

1 = use algorithm

Unfailed acc. error s. d.

Unfailed gyro error s. d.

Acc. prefilter time
constant

Gyro Prefilter time
constant

Loop termination criterion

Des cription

O = do not use algorithm

1 = use algorithm

6 is zero).

O = Acc. use Bounding
Sphere Algorithm

1 = Acc. use Least-
Squares Algoritnm

O = Gyros use Bounding
Sphere Algorithm

1 = Gyros use Least-
Squares Algorithm

Max. filtered error of
unfailed acc.

Max. unfiltered error of
unfailed acc.
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Variable

THGMI

THGSI

TAUPAQ(6)

TAUPGQ(6)

(THASI is not required if

equals 1).

Sequential Algorithn

Units Description

deg/hr Max. filtered error of
unfailed gyro

deg/hr Max. unfiltered error of
unfailed gyro

sec Acc. prefilter time
constant

sec Gyro prefilter time
constant

LSQA equals 1; THGSI is not required if LSQG

n

Variable Units De s c ription

LALG7 0 = do not use algorithm

1 = use algorithm

(The following inputs are not required if LALG7 is zero).

SIGPA( 1 ) g Acc. input state initial
s.d.

SIGPA(2) Fg Acc. error state initial
s.d.

SIGQA(1) FEg Acc. input state noise
s. d.

SIGQA(2) Hg Acc. error state noise
s. d.

SIGRA Ig Acc. measurement error
s. d.

TAUSA(1) sec Acc. input s.t.m. time
constant

TAUSA(2) sec Acc. error s. t. m. time
constant

THRAI(1) 4g Acc. high level threshold

THRAI(2) Acc. low level threshold
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Variable

SIGPG( 1 )

SIGPG(2)

SIGQG(1)

SIGQG(2)

SIGRG

TAUSG ( 1 )

TAUSG(2)

THRGI(1)

THRGI(2)

Units

deg/hr

deg/hr

deg/hr

deg/hr

Gyro
s. d.

Gyro
s. d.

Gyro
s. d.

Gyro
s. d.

Gyro
s.d.

deg/hr

sec

sec

deg/hr

Des cription

input state initial

error state initial

input state noise

error state noise

measurement error

Gyro input s. t. m. time
constant

Gyro error s. t. m. time
constant

Gyro high level threshold

Gyro low level'threshold

6. 2. 8 Nominal Trajectory (Paragraph 4. 4. I and Appendix A)

The nominal trajectory is specified by a subroutine named TRAJ

written in FORTRAN IV. A shuttle boost trajectory is included in the

program at present. The trajectory is broken up into piecewise segments

of analytical functions of time. The logic to choose the correct segment

must be supplied. It may depend upon the time T, provided there is no

discontinuity in the functions at the switching time. Any values of T are

permissible for use in the segment selection logic. If there are discon-

tinuities present, they may only occur at the times

tN= N * N4MAX DT N = 0, 1, 2,... (6-1)

The number of the discontinuity opportunity is given by N

N = N3MAX' (N2 -- 1) + N3 (6-2)

where N2 is the major cycle counter and N3 is the trajectory step counter.
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Eq. 6-2 should be the first executable statement of the subroutine. The

logic to choose the correct segment must depend upon N if there is a

discontinuity. The value of T corresponding to N is given by Eq. 6-1.

Logic based on T may be mixed with logic based on N. The body angular

velocity is specified by VPAB(1:3), and the body acceleration is specified

by APLB(1:3). It is convenient to take the body axes as:

(1) Roll (forward)

(2) Pitch (right)

(3) Yaw (down).

6.3 OUTPUTS

A typical run is shown in Appendix A. The outputs will be de-

scribed here.

6. 3. 1 Inputs

At the beginning of the output we find the program name, the date,

and the time. Then all of the NAMELIST inputs are printed out in groups.

If LALGi is 0, the remaining inputs for algorithm i are not printed, even

if they were present in the input data.

6. 3. 2 Events

Following the inputs, we find the output data for each trial. First

we see a listing of all of the events taking place during the trial. When-

ever an instrument is failed, the time, instrument type, instrument num-

ber, and mode of the failure are given. Whenever an instrument is

healed, the time, instrument type, and instrument number are given.

Whenever an algorithm changes state, the time, algorithm number,

instrument type, instrument number, and type of state change are given.

There are nine possible types of state change of interest:

ALL CLEAR The algorithm changes the state of
a healed instrument from failed to
unfailed

CORRECTED FALSE The algorithm changes the state of
ALARM an unfailed instrument from failed

to unfailed

FALSE ALARM The algorithm changes the state of
an unfailed instrument from unfailed
to failed
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LOST ALARM

TRUE ALARM

FORTUITOUS TRUE
ALARM

FORTUITOUS ALL
CLEAR

MISSED ALARM

MISSED ALL CLEAR

The algorithm changes the state of
a failed instrument from failed to
unfailed

The algorithm changes the state of
a failed instrument from unfailed
to failed

An instrument fails when the
algorithm has already determined
its state to be failed

An instrument is healed when the
algorithmhas already determined
its state to be unfailed

The trial terminates and the
algorithm has determined the state
of a failed instrument to be unfailed

The trial terminates and the
algorithm has determined the state
of a healed instrument to be failed.

Figure 6-2 shows the state transitions and the corresponding messages.

The left-hand two states (circles) correspond to an unfailed instrument,

the middle two to a failed instrument, and the right-hand three to a healed

instrument. The upper four states correspond to an instrument state in

the algorithm of failed (alarm), and the lower three states correspond to

a state of unfailed (no alarm). Horizontal transitions are caused by fail-

ure or healing, curved line transitions by changes of algorithm instru-

ment state, and vertical straight line transitions by the end of the trial.

The upper right-hand state is split so as to distinguish between all clears

and corrected false alarms.

Unlike the other algorithms, the Adaptive 66 and Maximum Likeli-

hood Algorithms do not have internal logical states that give obvious

meanings to the concept of alarm or no alarm. Rather than obtain no

such information for these algorithms, it was decided to invent an arbit-

rary criterion for the presence or absence of an alarm. This criterion,

for both algorithms, is that an alarm occurs when the variance of an

instrument is found to be greater than three times the variance of unfailed

ins truments.
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UNFAILED

ALARM Q-

CORRECTED I C
FALSE FALSE LOST TRUE ALL ALARM FALSE
ALARM ALARM ALARM ALARM CLEAR ALARM

FORTUITIOUS
NO ALARM

ALL CLEAR

MISSED
ALARM

END OF TRIAL

Figure 6-2. Event Logic

6.3.3 Figures of Merit

The figures of merit are printed out at the end of the trial. They

appear in nine columns for algorithms 0 to 8, and four rows. The first

row gives the magnitudes of the small angle error vectors between the

attitudes of algorithms 0 to 8, and the ideal attitude. The second row

gives the magnitudes of the small angle error vectors between the atti-

tudes of algorithms i to 8, and the attitude of algorithm 0, the nominal

algorithm. The third row gives the magnitudes of the error vectors

between the inertial velocities of algorithms 0 to 8, and the ideal inertial

velocity. The fourth row gives the magnitudes of the error vectors

between the inertial velocities of algorithms i to 8, and the inertial

velocity of algorithm 0. The first two rows are in arc sec and the last

two in m/sec.

The second and fourth rows are useful in discerning differences

between the algorithms when their answers are close to the nominal

algorithm, that is when the errors caused by failures are being obscured

by the effects of strapdown algorithm truncation error and unfailed errors.

The absolute significance of these figures of merit is less clear.
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The algorithm numbering scheme is:

0 Nominal

1 Adaptive 66

2 Fifteen Threshold

3 Squared Error

4 Bayesian Decision Theory

5 Maximum Likelihood

6 Minimax

7 Sequential

8 Not yet implemented
(intended for Adaptive 72).

6. 3. 4 Algorithm Execution Times

Following the figure of merit, we find the total times (in sec) spent

by the central processor in the FDIC portion of each algorithm during the

trial, and the peak times required by each algorithm in any single minor

cycle. Unfortunately, the latter are quantized too coarsely (msec) to be

of much value.

The final random number and the total central processor time used

so far in the trial are then printed out.

6.3.5 Statistics

At the end of the case, the statistics of the trials are printed out.

The mean magnitudes of the figures of merit are printed out in the same

format as described above. The total FDIC time for all trials and the

peak FDIC times for any trial are also printed out. A summary of all

the events occurring during the case is also presented.

6. 3. 6 Plot Tape

The plot tape is written in binary format on logical unit 13 using

binary blocking. If binary blocking is not desired, or if the program is

to be used with other than CDC 6X00 computers, a DATA statement and

the third executable statement in the main program, FAIL, should be

removed. These statements are:

DATA IRAY/13/
CALL FTNBIN(1, 1, IRAY)
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Each record on the plot tape contains 19 words. The first word is the

time. The (2i + 2) t h word is the magnitude of the small angle attitude

error vector in arc sec for algorithm i; the (2i + 3 )th word is the mag-

nitude of the inertial velocity error vector in m/sec for algorithm i;

i = 0, 8.
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7. SETTING THE PARAMETERS

The seven algorithms actually implemented have among them

some 26 adjustable parametcrs for the gyros and 25 for the acceiero-

meters; the Sequential Algorithm accounts for a third of these. Setting

these parameters correctly presents quite a problem. Ideally, the

parameters should be set optimally for each algorithm. However, even

reaching an acceptable definition of optimality is a difficult task.

The analytical setting of the parameters presents formidable dif-

ficulties, since all of the algorithms are nonlinear, and a different analy-

sis would have to be performed for each. In fact, if one were capable of

setting the parameters analytically, this would imply the ability to deter-

mine performance analytically, and FAILSIM would be unnecessary.

One example of the type of difficulty encountered in trying to predict

behavior analytically is the "failure induced false alarm. " A configuration

of unfailed errors that could not produce a false alarm by themselves

may, in the presence of a failure of one instrument, cause a false alarm

for a different instrument. If an instrument is already failed and isolated,

the false alarm precludes isolation of the new failure.

Table 7-I shows the number of parameters in each algorithm. It

also shows whether or not independent threshold settings are available for

the second failure.

Table 7-I. Adjustable Parameters in the Several Algorithms
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Parameters Threshold for

Algorithms Accs. Second Failure
Gyros Accs.

Adaptive 66 2 2 Same as first

Fifteen Threshold 2 2 Same as first

Squared Error 6 5 Independent

Bayesian Decision Theory 3 3 Independent

Maximum Likelihood 2 2 Same as first

Minimax/ Least Squares 2 2 4. 2 dB above first

Adaptive 72 ? ? Independent

Sequential 9 9 Same as first



Happily, the authors of the Squared Error Algorithm have

supplied four of the thresholds:

AKZI = GKZI = 4/9 (7-1)

AK4I = GK4I = 8/21 (7-Z)

If we assume that setting AKGDI to zero has no major effect on perfor-

mance, then we need determine only three parameters for the gyros and

three for the accelerometers. Then only the Sequential Algorithm has

more than three parameters to determine. The difficulty in selecting

parameters for this algorithm has been alleviated somewhat by the analy-

sis of Appendix B. By its use, one can assign the parameters of the

Sequential Algorithm to give an equivalent steady-state time constant.

To provide a reasonably fair way of setting the parameters, it was

decided to allot equal amounts of effort to each algorithm. After all, if

an algorithm requires less effort than another in parameter setting, it

has an advantage that ought to show up in the final results.

After consideration of various possibilities, it was decided that a

reasonable approach, capable of being achieved in a limited number of

computer runs, would be to set all of the thresholds for the same false-

alarm rate. Thus all algorithms would give about the same performance

in the absence of failures (the most probable situation for any particular

mission), and their relative performance in the presence of failures

would serve to establish their relative merits.

The procedure followed was to choose two values for the time con-

stants: 100 and 10 sec. The 100-sec value was used first. A series of

runs was- made with no failures. The thresholds were adjusted in steps

of 2 dB until a value was found for each algorithm for which no false alarm

alarms occurred while a 2-dB lower threshold produced at least one

false alarm. (The accelerometer threshold-setting process was not com-

pleted for lack of time, so the following comments apply to the gyros

only. )
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Runs were then made with small MODE = 1 failures at 200 sec

(halfway through boost). False alarms occurred in the Fifteen Threshold,

Minimax, and Sequential Algorithms. Raising the thresholds 2 dB elimi-

nated the false alarms.

More runs were made with a large MODE = 1 failure at 190 sec and

a small MODE = 1 failure at 200 sec. The purpose of these runs was to

set the thresholds for second failures in those algorithms that had them.

The large failure was chosen large enough to cause all of the algorithms

to isolate the failure within one minor cycle, so that no data from the failed

instrument were used. It was found necessary to set the second-failure

thresholds higher than the first-failure thresholds in the Squared Error

and Bayesian Decision Theory Algorithms in order to eliminate false

alarms. For the same reason, it was necessary to raise the thresholds

of the Adaptive 66, Fifteen Threshold, Maximum Likelihood,and Sequen-

tial Algorithms, thus degrading their performance on first failures. Thus

the desirability of independent first- and second-failure thresholds seems

obvious. However, it was not found necessary to raise the single thresh-

old of the Minimax Algorithm, apparently because the built-in 4. 2 dB

ratio between effective first- and second-failure threshold levels is close

to optimal. For the Maximum Likelihood and Sequential Algorithms, the

thresholds had to be raised so high in order to eliminate false alarms

that a true alarm was not obtained on the second failure.

This procedure was repeated with a 10-sec time constant. With

this value of time constant, the Maximum Likelihood and Sequential

Algorithms succeeded in obtaining true alarms without false alarms. The

10-sec time constant was found to be somewhat better for all algorithms,

so it was chosen for the remaining runs. The thresholds selected to go

with the 10-sec time constant were considered the final set for use in the

competition. However, the first double-failure test run produced false

alarms (before any failures) for the Squared Error, Bayesian Decision

Theory, and Minimax Algorithms, so their thresholds were all raised by

2 dB, eliminating the false alarms.
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8. SIMULATION RESULTS

The symbols used to plot the errors of the various algorithms are:

o) Nominal Algorithm or multiple point

A Adaptive 66 Algorithm

+ Fifteen Threshold Algorithm

X Squared Error Algorithm

< Bayesian Decision Theory Algorithm

4S Maximum Likelihood Algorithm

El Minimax Algorithm

Z Sequential Algorithm

8. 1 100-SEC TIME CONSTANT RUNS

The gyro FDIC algorithm parameters for the 100-sec time constant

runs are given in Table 8-I. (The threshold setting process was not suc-

cessful for the Maximum Likelihood and Sequential Algorithms so they do

not appear in Table 8-I.)

Table 8-I.

Adaptive 66

EPSOG = 1. 585
CRIT1 = 0. 1

Fifteen Threshold

THG1 = 1. 585

Squared Error

GKlI = 1.41
GK3I = 2.51
TAUPGQ(3) = 100.
LHEAL = 0

Bayesian Decision Theory

THGlI = 1. 995
TAUPGQ(4) = 100.

Minimax

THGMI = 0. 617
LSQG = 1

FDIC Parameters

TAUPGQ(1) = 100.

TAUPGQ(2) = 100.

GK2I = 4/9
GK4I = 8/21
AKGDI = 0.

THG2I = 3.98

TAUPGQ(6) = 100.
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8. 1. 1 First Failures

A series of runs was made with a MODE=1 gyro failure of varying

magnitude at 200 sec using the parameters shown above. Figure 8-1

shows the attitude error at the end of the single trial in arc sec versus the

magnitude of the failure in deg/hr. The same initial random number

was used for each trial.

8. 1. 2 Second Failures

A series of runs was made with a large MODE=1 gyro failure at

190 sec. All of the algorithms switched out the failed gyro within one

minor cycle, so that no erroneous data were incorporated in the strapdown

solution. A second MODE=l gyro failure of varying magnitude occurred

at 200 sec, using the parameters shown above. Figure 8-2 shows the

re sult s.

8.2 10-SEC TIME CONSTANT RUNS

The gyro FDIC algorithm parameters for the 10-sec time constant

runs are given in Table 8-II.

8. 2. 1 First Failures

A series of runs was made with a MODE=1 gyro failure of varying

magnitude at 200 sec using the parameters shown above. Figure 8-3

shows the results.

8. 2. 2 Second Failures

A series of runs was made with a large MODE=1 gyro failure at

190 sec and a smaller MODE=1 gyro failure of varying magnitude at

200 sec, using the parameters shown above. Figure 8-4 shows the

results.

The 10-sec time constant results look better than the 100-sec time

constant results for the larger failures and somewhat worse for the

smaller failures. The choice of 10 sec might minimize the average error,

while the choice of 100 sec might minimize the worst-case error. An

intermediate value of time constant might be a good compromise. In any

event, 10 sec was chosen as the time constant for the subsequent runs.
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Table 8-II. FDIC Parameters

Adaptive 66

EPSOG = 3. 16
CRIT1 = 0. 1

Fifteen Threshold

THG1 = 5.01

Squared Error

GKiI = 3. 54
GK3I = 6. 31
TAUPGQ(3) = 10.
LHEAL = 0

Bayesian Decision Theory

THG1I = 5. 01
TAUPGQ(4) = 10.

Maximum Likelihood

SIGQGO = 8.78
CRIT5 = 0. 1

Minimax

THGMI = 1. 55
LSQG = 1

Sequential

SIGPG(1l) = 206000
SIGQG(1) = 206000
SIGRG = 51
TAUSG(1) = 0. 0128
THRGI(1-) = 618000

TAUPGQ(1) = 10.

TAUPGQ(2) = 10.

GK2I = 4/9
GK4I = 8/21
AKGDI = 0.

THG2I = 10.

TAUPGQ(5) = 10.

TAUPGQ(6) = 10.

SIGPG(2) = 4. 03
SIGQG(2) = 0.55

TAUSG(2) = 20.
THRGI(2) = 0. 196

This behavior of the errors in response to changes in the time con-

stant of the prefilter (with concomittant threshold changes to keep the

false alarm rate constant) can be verified from the analysis of Subsec-

tion 3. 1 qualitatively, if not quantitatively. Figure 8-5 shows Eq. 3-110

plotted for two values of b and Tf. The values of Tf are the two values

used in the simulation. When the time constants were decreased from

100 to 10 sec, the thresholds were increased by 8 to 10 dB. Thus the

ratio between the two values of b used in Figure 8-5 was taken as 9 dB.

The left-hand portion of both curves is simply the failure magnitude multi-

plied by 200 sec (the time from the failure to the end of boost).
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Figure 8-5. Theoretical Error Magnitude Versus
Failure Magnitude

8. 3 DOUBLE SIMULTANEOUS FAILURE RUNS

A series of runs with double simultaneous gyro failures of different

MODE values was made as a severe test of the capabilities of the different

algorithms. The three algorithms which gave the poorest results in the

previous tests, the Adaptive 66, Maximum Likelihood, and Sequential Algo-

rithms, also required the most central processor time. It was therefore

decided to eliminate them from contention at this point, and devote the

remaining resources to the evaluation of the more successful algorithms.

On the first trial, the Squared Error, Bayesian Decision Theory,

and Minimax Algorithms all experienced false alarms before the failures

occurred. Their thresholds were all raised 2 dB, eliminating the false

alarms. The gyro FDIC algorithms parameters for these runs are given

in Table 8-III.
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Table 8-IIL FDIC Parameters

Fifteen Threshold

THG1 = 5.01

Squared Error

GKII = 4. 46
GK3I = 7. 94
TAUPGQ(3) = 10.
LHEAL = 0

Bayesian Decision Theory

THGiI = 6. 31
TAUPGQ(4) = 10.

Minimax

THGMI = 1. 953
LSQG = 1

TAUPGQ(2) = 10.

GKZI = 4/9
GK4I = 8/21
AKGDI = 0.

THG2I = 12.59

TAUPGQ(6) = 10.

Every combination of two failures of MODE 1 through MODE 6 was

tried for a total of 21 cases. MODE 7 was omitted because it was felt that

no algorithm would have much difficulty with so hard a failure. Different

initial random numbers were used for each case. Only one trial was made

per case. The magnitudes of the attitude error vector with respect to the

ideal attitude and with respect to the nominal algorithm attitude were

averaged over the 21 cases, giving the results in Table 8-IV.

Table 8-IV. Results of Double Simultaneous Failures (arc sec)
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Algorithm Ideal Nominal Algorithm

Nominal 434 0

Fifteen Threshold 688 396

Squared Error 761 465

Bayesian Decision Theory 841 563

Minimax/Least Squares 672 366



The events occurring during the 21 trials are summarized in

Table 8-V. The prevalence of false alarms indicates that the thresholds

may still be set a bit too low. The prevalence of missed alarms is partly

due to the choice of too low-level failures in some of the failure modes.

Table 8-V. Summary of Events

We see that the two algorithms using the indirect test signals

(parity signals) do somewhat better than the two using the direct test

signals (residuals). We also note that the test signals of the three algo-

rithms already eliminated from contention are more closely related to the

direct than to the indirect test signals. Thus we find a reasonably strong

presumption in favor of the indirect test signals being the better choice.

With the benefit of hindsight, we may find plausible reasons why

this result is obtained. One reason is that, with 15 signals as compared

to six, one can discriminate a greater number of different states in v-space.

Another reason is that there is only a 7 dB ratio between the contribution

of the ith instrument error to the i t h residual and the contribution of the
.th thj instrument error to the i t h residual, whereas there is an infinite ratio

between the contributions to a parity signal of the error of an instrument

included in it as compared to an instrument excluded from it.

8.4 MINOR CYCLE TIME

All of the preceding runs were made with a minor cycle time of

125 msec. Originally it was intended to use 10 msec, which is a value

more typical of practical strapdown packages. However, the running
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Algorithms

Events Fifteen Squared Bayesian Minimax
Threshold Error Decision Least-Threshold Error

Theory Squares

False alarms 4 5 3 4

True alarms 23 25 21 25

Missed alarms 19 17 21 17



time on the CDC 6400/6500 proved to be excessive. The 125-msec period

was selected as a good compromise between running time and loss of accu-

racy. In order to estimate the loss of accuracy, a single trial was run

with the nominal algorithm only using the 10-msec period. The resulting

attitude error magnitude of 113 sec may be compared with the value of

434 sec given in Table 8-IV.

If we RSS the 113 sec nominal algorithm error with the error with

respect to the nominal algorithm achieved in the results above, we get a

crude indication of the performance achievable in the presence of failures

with the Minimax Algorithm with the 10-msec period.

1132 + 3662 = 3842 (8-1)

This estimate shows some 12 dB of performance degradation in the

presence of double failures as compared to the nominal algorithm. In the

worst case of the 21 cases, the degradation was 27 dB. Of course, such

occurrences will probably be rare, but it is interesting to note that even

the best algorithm can occasionally do rather poorly. (However, a

slightly higher threshold setting might have eliminated the worst case,

which was caused by false alarms. )
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9. ALGORITHM SIZING AND TIMING

9. 1 ALGORITHM SIZING

Algorithm sizing comparisions are made by finding the storage

requirements for the FDIC algorithms on the CDC 6400/6500 computer.

Only the MINi subroutines are included. The number of words used for

instructions, the number of words used for data, and the total of the two

are presented in Table 9-I.

Table 9-I. Algorithm Sizing

It should be noted that CDC 6400/6500 words contain several instruc-

tions each, so that an accurate instruction count has not been obtained.

(The Bounding Sphere Algorithm is excluded from the Minimax Algorithm

figures since it was not used; however, the logic deciding whether to use

least-squares or bounding spheres and the calling sequence to the sub-

routine SPHERE is still included. Also, the Minimax Algorithm can be

simplified somewhat if it is used only with least-squares. Therefore, the

figures for the Minimax Algorithm must be considered to be a bit high. )

9.2 ALGORITHM TIMING

Algorithm timing comparisons are made by keeping track of the

central processor time spent on each algorithm. As mentioned above,

the peak timing results are too coarsely quantized to be very useful. The

total time used by the different algorithms in a typical run is given in

Table 9-II.
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Algorithms Instruction Words Data Words Total

Adaptive 66 460 156 616

Fifteen Threshold 358 120 478

Squared Error 608 153 761

Bayesian Decision Theory 526 137 663

Maximum Likelihood 640 202 842

Minimax 700 167 867

Sequential 447 360 807



Table 9-II. Total Processor Time (sec)

However, the Adaptive 66 and Maximum Likelihood Algorithms,

unlike any of the others, have iterations or loops of indefinite length in

their structure which, on occasion, can consume much more time than

even the Sequential Algorithm. For example, the Adaptive 66 Algorithm

once used up 479. 3 sec of central processor time in a single trial. (The

Maximum Likelihood Algorithm was not turned on, fortunately, or it

might have done even worse.) The timing on the Minimax Algorithm may

be somewhat high, for the same reasons as given in Section 9. 1. The

average (but not the peak) time could be decreased somewhat at the cost

of increased size by reverting to the original scheme, which has a separate

failure detection scheme with failure isolation not occurring unless a

failure is detected.
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Algorithms Time

Adaptive 66 10.6

Fifteen Threshold 8. 5

Squared Error 6. 3

Bayesian Decision Theory 7. 0

Maximum Likelihood Theory 15. 6

Minimax 14. 6

Sequential 188.0



10. AREAS FOR FUTURE STUDY

Although the original tasks required in the study have all been

completed, a wn ber of areas where additional w.ork ought to be done

have become apparent during the course of the study. They will now be

discussed.

Up to the time that the Adaptive 72 Algorithm appeared, the question

of filtering seemed to be merely a choice between two linear low-pass fil-

ters with slightly different impulse responses. The Adaptive 72 Algo-

rithm uses a nonlinear filter described as "a suboptimal detection system

based on Wald' s sequential analysis using the concept of information

value and information feedback. " This filter could be used by the Fifteen

Threshold, Bayesian Decision Theory, and Minimax Algorithms as well

as by the Adaptive 72 Algorithm. It would be worthwhile to compare the

three kinds of filters in the same algorithm.

The Adaptive 72 Algorithm failure detection, isolation, and correc-

tion schemes should be coded for evaluation in FAILSIM when the docu-

mentation of the SIRU application becomes available. The identification

and recertification schemes need not be studied at this time as there is

no competitor on the scene- merely confirming the originator's results

would not be worthwhile.

The original program plan did not include the evaluation of the

effects of "glitches" (temporary failures) on algorithm performance. How-

ever, the capability of healing failures was included in the failure pro-

grammer of FAILSIM. A study of the effects of glitches using FAILSIM

would be desirable. It will probably lead to the modification of some of

the algorithms, however, because none of them appear to have been

designed with glitches specifically in mind. The hypothesis that an instru-

ment has healed itself is not the complement of the hypothesis that an

instrument has failed, because, in the first case, we know which instru-

ment we are talking about before we make the decision, while in the second

case we do not and must, in effect, make six decisions. Thus the decision

that an instrument should be reinstated should not necessarily be based

on the disappearance of the conditions that caused it to be classified as

failed in the first place.
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A goal (rather than a requirement) of the original program plan

was to combine the best features of the algorithms into a super-algorithm.

In addition to the obvious combination of the best filter or prefilter with

the best isolation technique, other possibilities exist. An example is

that of applying the signal locking technique used with the Fifteen Thresh-

old Algorithm to the Minimax Algorithm to see whether improved

isolation results. Thus this goal is still a desirable one.
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APPENDIX A

TYPICAL RUN

The inputs and outputs of a typical run are presented in this appendix.

A. 1 NAMELIST INPUTS

The NAMELIST inputs are presented in this section. They are typi-

cal of the inputs used during the final series of runs, the double simul-

taneous failure runs. Although algorithms 1, 5, and 7 are turned off,

their parameters are left in the input file for convenience. The values of

these parameters are the final set used in the 10-sec time constant runs.

This run has only one case. To add more cases, one simply appends

their data decks. The data for each case must be preceded by a $INPUT

card and terminated by a $. All cards must start in column 2, except the

comments which have a C in column 1.

The case has only one trial. To add more trials, set N1MAX to the

number of trials.
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CDATA FOR FAlL IN4, CASE 1
$ INPUT
DT = .125
IRDM = 25175690C5
LMONTE = 0
IPLOT = 0
NIMAX = 1
N2MAX = 400
N3MAX = 2
N4MAX = 4
AVBS = 1., I., 1. .981, .981, .961
TAUV = .04, .C4, .04, .04, .04, .04
KV = 7., 7., 7., .7, .7, .7
KP = 25.. 25., 25., .25t' .25, .25
RADIUS = 6.
IR1 = 1, IP2 = 2, IR3 = 3
THTRII = 0., THTP21 = 0., THTt3I = O.
TrTAI = 0., 0., 0., 0., 0., O.
THTGI = 0., 0., 0., 0., 0., 0.
SIGUFEA = 86., 1., 70., 5)., 50.
SIGUFEG = .083, .01, 100., i )., 10., .Z, .02, .2, .04
QACCI = 2.
QGYROI = 5.
NFAIL(1) = 16JD, 1600
NINST(L) = 1, 6
MODE(l) : 1, i
FAIL1I( 1} = 10., 10.
LALGO = 1
LALG1 = 0
EPSOA = 1585.
EPSOG = 3.16
TAUPAQI1) : 10.
TAUPGQ(1) = 1C.
CRIT1 = .1
LALG2 = 1
THAI = 1l95.
THGI = 5.01
TAUPAQ(2) = iC.
TAUPGQ(2) = 1C.
LALG3 = I
LHEAL = 0
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AK11 = 2240.
AK21 = .444444444444444
AK3I = 1995.
AK4I = .380952380952381
GK1I = 4.46
GK2I = .444444444444444
GK3I = 7.94
GK4I = .380952380952381
TAUPAQ(3) = 1C.
TAUPGQ(3) = 1C.
LALG4 = I
THAlI = 3160.
THA2I = 3160.
THG1I = 6.31
THG2I = 12.59
TAUPAQ(4) = 10.
TAUPGQ(4) = 1C.
LALG5 = 0
SIGQAO = 5540.
SIGQGO = 8.76
TAUPAQ(5) = 10.
TAUPGQ(5) = 1C.
CRIT5 = .1
LALG6 = 1
LSQA = 1
LSQG = 1
THAMI = 978.
THASI = 100.
THGMI = 1.953
THGSI = .1
TAUPAQ(6) = 10.
TAUPGQ(6) = 1G.
LALG7 = 0
SIGPA = 3.E6, 65.8
SIGPG = 206000., 4.03
SIGQA = 3.E6, 8.99
SIGQG = 2C600C., .550
SIGRA = 833.
SIGRG = 51.
TAUSA = .0128, 20.
TAUSG = .0128, 20.
THRAI = 9.Eb, 7.58
THRGI = 618000., .196
SEND
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A. 2 TRAJECTORY SUBROUTINE

The subroutine, TRAJ, that defines the nominal trajectory is pre-

serteLI. here. It r*eprese.ts a 00-sec shuttl a..ooU s tra rJ. 7 .e Para--

graph 6. 2. 8 for a detailed description of the method. Note that VPAB and

APLB are zeroed out in the main program, FAIL, before each trial, so

that statement 80, for example, computes only the nonzero component of

angular velocity.
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'*TRAJ
SLBRGUTINE TRAJ
CCMHON ROWI, (6,3)1 AMASK(15), BAC(3,6,S, BG'Q(3,6,S9) C(3,6),

I CF(15,3), NPSSMCG, ONASK(6), CUTP(12), PHISTQ(3,9), RAODSEC,
2 RHOQ(4,9), RHOO(4)1, SAI(91 5Q SG9), 1T lMt(EiZvZI, VBti3,Sl,
3 VIQ(3,9)

COMWCN ACC(3), AKGOI1 AKII, AK21t AK31, AK41, AR(12,3,31, CT,
-GTMAJ, DT2, EPSOAt EPSOG, FAILIIIJe' FAILZIlZ), GKIt GKZIt GK31-
2 GK41, 1, IDATA, INST(12), IRON, IR1, [R2, IR3, KCUNTA(B8,9,
3 KCUNTG(8,9), LALG(S), LhEAL, LMONTE, LPLCTt LSQCA LSgG, MOCE(14),
4 NFAIL(t4I, NINST(14), NIMAX, NZ. hZMAX, N3, MAX, h4qAX, UHMI3{,
5 CUT, CACC, QGYROC CRITI1 CRITS5 SAQOI91, SAQl(9), SGQO(9),
6 SGQI(9), SIGPA(Z), SIGPG(2), SIGQA(2), SIGQAOP SIGQG(2), SIGQGO,
7 SIGRA-- SIGRG, SIGUFEA(5), SIGUFEG(91, TAUPAQ(6), TAUPG(G6),
8 TAUSA(2), TAUSG(2), TFAIL(12), THAI, THANMI, HASI, THALI, THA21,
9 THGI, THGNI, ThGSI, ThGII, THG21, THRAI(2), TkRGI(2), THTA(61,
A THTG(6), THTRl, THTR2, THTR3# UFEI12,9), XI7), XFAILII14J,
B XFAIL2(14)
CCMPCN APLB(3), AVB(6it AVBA(6), AYBB(6), AVBS(6), AVBO(6),
-AVB1TT -;]-VBZ(i,-AVB3(61, AL(619 AIZT-O-T T6t -1--ltb{t, BZI6J,

2 C6O(b), C216), DX(7), KPb6), KVI6), QI7), RACIOS, TAUV(6),
3 TM(4,4),' VPAB(3), VVAB(31

jC PROGRAI; EC TRAJECTCRY eEFCUR ACCIIICh GF RANhUM VIUKAIIUN-
N = N3MAX*(N2 - 1) + N3

XC BODY ANGULAR VELOCITY
-- -- I- : GT- 39- soGo-" a C - --
IF IN .GT. 224) GC TG 20
IF (N .GT. 40) GO IC 10
IF (N .G0. 161J SueC

10 IF IN .GT. 140) 11Ci,lO
i20 IF IN .GT. 232) GO 0C 30

IF (N .-G.T 225T --- 1T---3--
30 IF iN .GT. 233) 15C,140
'4C IF IN oGT. 420) GC IC 60

!i -IF IN .GT. 414) GOG TO 50
IF IN .GT. 394) 17C,160

!50 IF IN .GT. 415) 19C,180
- -TF-N- ,T17 T- u 7--Gi U

IF (N oGT. 421) 21C,2CC
7C IF (N .GT. 782) 23C,22C
C O. 10 8. SEC.
80 VPAe(2) = -3.4E-4 - 1.5E-6*T
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G ICG 260
C 8. IC 2C. SEC.
90 VPAE(2) = -6.7E-3 - 8.E-5*T

GO TO 260
C 20. TC 7C. SEC.
100 VPA8(2) = 2.604E-3 t l-6.684E-4 + 6.16E-6*t1*T

GL IC 260
C 7C. TC 112. SEC.
110 VPAB(2) = -2.17E-2 + 1.IE-44T

GC TC 260
C 112. 'T- 112.5 SEC.
120 VPABe1) = -1.3E-3

VPABi(2) = 8.2E-2
VPAE(3) = 5.05E-2 - 6.25E-4*T
GC 'TC 260

C 112.5 TC 116 SEC.
130 VPAell) = -1.E-3

VPA8(2) = .1305 - 1.E-3*T
VPAB(3) = 5.05E-2 - 6.25E-4*T
GO 10 260

C 116. TO 116.5 SEC.
140 VPAe(l) =-.24112 + 2.07E-3*1

VPAB 2) = 4"1441 - 3.56E-2*T
VPAE(3) = -5.29304 + 4.544E-2*1
GO TO 260

C 116.5 tC 156.5 SEC.
150 VPA8(1) = -1o888125E-5 + 4.625E'7T

VPAB(2J = -3.8625E-3 + 5.E-6*t
-- .. VPAAE(I33 = 8-.365E-4 - loE-6*T

GO TO 260
C 156.5 TI 1S7. SEC.
160 VPAB(1) = 2.8368E-2 - 1.44E-4*T

VPA8(2) = -1.1426 + 5.8E-3*T
VPA8(3) = .25216 - 1.28E-3*1
GO TO 260

C lS7. IC 201. SEC.
170 VPAB(2) = 0.

GO TO 240
C 207. TO 207.5 SEC.
180 VPAB{2) = -11.178 + 5.4E-2*T

VPIAB(3 = -. 828 + 4.E-3*T
GO TO 260
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C 2C7.5 TO 210. SEC.
190 VPeA8(2) = 2.7E-2

VPAB(3) = -8.1E-2 + 4.E-4*t
GO TO 260

C 210-.-- O--2--O Sr-.t-C.'-,
200 VPAB(2) = 12.207- 5.8E-2*T

VPAB(3) = 1.011 - 4o8E-3*T
GO TC 260

C 210.5 T0 390.5 SEC.
210 VPAB(2) =-2.E-3

VPBil -' 6;E-4
GO 10 260

C 390.5 T0 391. SEC.
220 VPAB(2) = -1.9E-2

VPAB(3) = 7.2E-3
GO TO 260

C 391. T0 400-. EC. -

230 VPAB(2) = 0.
C ZERO CGCPONEN7IS
240 VPA8(3)-= 0.
250 VPAB(1) = 0.
C BODY aCCELERATION
260 IF TR .. . 272 GtO .....

IF (N °GT. 140) GO 10 280
IF (N .GT. 100) GO TO 270
IF ('N' .G*T.' 80) 32-031---

270 IF (N .GT. 112) 34C,330
280 IF (N ,GT. 2321 GO 10 370

...... -- F' -l--INq '"*'''~g-2T-*'3;'E; 3 T
290 IF (N GT. 414 GO TO10 300

IF (N .GT. 395) GO 10 400
IF (N .GT-'. 394) 390,380 - -

300 ,IF (N .GT. 720) GO T0 430
IF (N .GT. 415) 42C,41C

C O '-. 1T 4..........
310 APL8(1l) 14. + .054*i

APLB(3) = -. 25 - .GC625*T
GO TO 440

C 40. TO 50. SEC.
320 APLEiL) = 16.16

AP LBT3*) ' 5
GO TO 440
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C 50, TO 56. SEC.
330 APLB(1) = 20.16 - .08*T

GC IC 440
C 56. TO 7C. SEC.
340 APL8(l) = 10.08 + .14T

GC TO 440
C 70. TO 112. SEC.
350 AFLB(1) = 4.48 + .18*T

GO IC 44C
C 112. TG 116. SEC.
360 APLB(1) = 2.24 + .24T

APLB(3) = 41.5 - .375*T
GO TC 440

C 116. TO 136. SEC.
370 AFLB(1) = 2.24 + .24T

APLB(3) = -. 956 - .CC9*T
GC TI 440

C 136. TO 197. SEC.
380 APLE(1) = 29*44

APLeO3) = .54 - .02*1
GO TC 440

C 197. 10 197.5 SEC.
390 'APLOl() = 11636.68 - 58.92*1

APLE(3) = -1319.36 + 6.68*T
GG T0 440

C 197.5 IC 2C7. SEC.
400 APLB(1) = -. 02

APLB(3) = -. 06
GC TO 440

C 207. 10 207.5 SEC.
410 APLBtI) = -6106.52 + 25.5*T

APLB(3) = -24.9 + .12*T
GC TC 440

C 2C7.5 TC 36C. SEC.
420 APL(1 ) = 1./(.114C2813C64487 - 2.22358682i7603E-4*t)

APLB[3) = 0.
GG TO 440

C 360. TO 400. SEC.
430 APLE(l) = 29.43
440 RETURN

END
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A. 3 OUTPUTS

This subsection presents the outputs of a typical run.
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APPENDIX B

THE SEQUENTIAL ALGORITHM IN STEADY STATE

The Kalman-Bucy filter equations for one of the three identical

one-state filter equations derived in Paragraph 3. 1. 2.4 are

i = i + ki(Yi i) (B-l)

m
~~~k. = - ~~~(B-2)

i m
i

+ r

Pi= ( -ki) mi (B-3)

Xi+1 = X i (B-4)

2
mi+l =~ Pi + q (B-5)

where t, m, and q correspond to 2', m 2 , and q2, respectively, in

Eqs. 3-76, 3-77, and 3-78.

If we combine Eq. B-1 and B-4, we obtain

Xi+l = xi + ki+l (Yi+l - Xi) (B-6)

Taking the Z transform, and assuming k i constant,

A kz
x z - + (1 - k) Y (B-7)

The Z transform of a first-order constant coefficient filter of gain Kf and

time constant Tf is

T

Kf i- e-
xT Y (B-8)

Tf
z - e
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Thus we see that, in the steady state,

k = Kf1 -e /)

T

(1 -k) =ef
c (1 - k) = e

are the equations relating the steady-state Kalman

coefficient filter. If we choose 4 as

filter to the constant

T

(B-11)

then

'
T T

k=l-e .)

Now consider the covariance equation. From Eqs.

Pi+l = (i - ki+ 1)( 2 pi + q)

B-.2, B-3, E

(B - 12Z)

and B-5,

(B-13)

Zpi, +q
ki+l =- + q* p +q+r

Using ki+
1

from Eqs. B-14 and B-13 gives

r(O.2 pi + q)

PPi+ + q + r

From Eqs. B-14 and B-15, we have

Pi 1 = r ki+l
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(B-10)

(B-14)

(B-15)

(B-16)



In steady state

Pi= po (B-17)

and

po = r k (B-18)

From Eqs. B-14, B-17, and B-18 we can obtain

q p [1-k) (B-1- k9)
'P 0 1 -k

Thus we can set up the Kalman-Bucy filter to have a desired steady-

state time constant. First we choose the time constant Tf and the

measurement variance r. Then we select the state transition matrix by

choosing Tv (a typical value would be ZTf). The steady-state Kalman-Bucy

filter gain k is then given by Eq. B-12. The equivalent filter gain Kf may

then be found from Eq. B-9. We now find the initial state covariance po

from Eq. B-18 and the state noise covariance q from Eq. B-19. The

filter will now start and remain in steady state.

If we wish to, we may now assign some other value to po (without

changing q). The filter will then undergo a transient, eventually reaching

the same steady state characterized by Kf and rf.
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